
Marvin Image Processing Framework

Development of the Emboss Filter Plugin

prepared by

Chris Mack

prepared for

Dr. Michael Verdicchio

CSIS-602 – Software Engineering

December 7, 2011

1

Table of Contents

Page

I. Project Plan 2

II. Concept of Operations 4

III. Software Requirements Specification (SRS) 6

IV. Test Plan 8

V. Test Report 10

VI. Software Architecture 12

VII. Software Design 18

VIII. Code Patch 27

Acknowledgement: The author wishes to acknowledge and sincerely thank one of the primary Marvin Developers,
Mr. Gabriel Ambrósio Archanjo for his generous support of this project and the plugin development. Gabriel
provided several late-night consultations over different time zones (via Skype) to support the development of the
emboss filter including: setting up the proper Eclipse IDE framework with Marvin, providing test case code
examples, and assisting in the evaluation/coding of emboss algorithms applied to develop the plugin. The author
looks forward to future contributions including topics explored with Mr. Archanjo including neural networks for
image processing (e.g., see: http://www.cs.waikato.ac.nz/ml/weka/).

2

I. Project Plan

A. Project Description
This project involves the development of an image analysis plugin for the Marvin Image
Processing Framework (MIPF) software package, which is currently in the beta stage of
development. The MIPF provides a foundation for an image and video analysis tool framework.
It is written using OO standards and documentation suitable for improving, developing new
plugins, and expanding features. The video analysis tools are useful for scientific analysis of
video streams to automate the analysis and extraction of changing video objects and are
extensions of the static image analysis plugins. So, if an image processing filter is developed for
static images, the MIPF allows for this same plugin to be applied to streaming video images in
real time. The MIPF can be viewed at: http://www.marvinproject.org.

The MIPF is in the beta stage, which provides an opportunity to test, develop documentation,
develop fixes, and provide new plugins or expanded capabilities of existing ones. Anyone can
add new features to Marvin via a plugin interface. This project proposes to support the MIPF in
this regard and apply an approach consistent with Software Engineering development practices.
In consultation with one of the Marvin developers, a new plugin will be developed for the MIPF.

B. Selection Criteria
The following summarizes the selection criteria of the MIPF for this research project.

o Operating System/platform: Windows, Linux, & MacOS (w/JVM).
o Developers: Danilo Muñoz,

Fabio Andrijauskas (http://andrijauskas.com.br/)
Gabriel Ambrósio Archanjo (http://garchanjo.com).

o Development State: Beta.
o Programming Language: Java.
o Collaboration in lists/forums: Facebook, Twitter, and Youtube Channel (has video

demonstrations of image analysis tools), and Google Groups:
http://groups.google.com/group/marvin-project

o Project Plan: Proposed addition or Bug Fix.
o References:
o Archanjo, G.A., Andrijauskas, F. and Muñoz, D.R. "Marvin - A Tool for Image Processing

Algorithm Development". Technical Posters of the XXI Brazilian Symposium on
Computer Graphics and Image Processing, October 12- 15, Brazil, 2008. link:
http://www.gpec.ucdb.br/sibgrapi2008/posters/47853.pdf

3

C. Selection Criteria
The proposed schedule and milestones for the project plan are shown in Table I.1 and Figure I.1
(Gantt Chart).

Table I.1 – Proposed schedule for MIPF development and testing.

Figure I.1 – Proposed GANTT chart for MIPF development and testing (corresponds with Table 1).

4

II. Concept of Operations

A. Introduction and Background
Marvin Image Processing Framework (MIPF) is an open source image processing framework
developed in Java. It provides various image analysis and processing plugins that run in the
common framework. MIPF is currently in the Beta state of development and provides the
following features:

o Manipulate images
o Manipulate captured video frames
o Multithreading image processing
o Integrate plugins with Graphical User Interface(GUI)
o Analyze plugin performance
o Extend features via plugins
o Unit test automation

Currently, there are 44 plugins available for a wide range of different purposes. In addition to
the image analysis and processing plugins, MIPF provides an image editor called MarvinEditor.
The intent of MIPF is to provide an extensible framework whereby newly developed plugins can
be integrated without modifications or refactoring of the base MIPF code.

B. Problem Overview
MIPF is in the Beta stage of development. Although multiple plugins have been developed, the
MIPF development team has identified several new plugins that need to be developed and
added to the MIPF plugin library, which include:

Image processing:
o Emboss filter
o Glow filter
o Color histogram equalization
o Color restoration
o Haar-like features extraction
o Scale-invariant feature transform
o Structural similarity (SSIM)

Machine learning:
o K-nearest neighbors
o K-induction of decision trees
o Neural networks
o Genetic classifier

5

C. Goals and Outcomes
Marvin is an open source project and the main goal as noted by its developers is “to help society
to bring image processing benefits to real world applications”. In order to justify the efforts on a
new image processing framework, MIPF developers are proposing the easiest and most
extendable one. Marvin plugins are created to be used in third-party applications, MarvinEditor,
video editors, web applications and so forth. Therefore, plugins are the core of our MIPF idea.
The goal of this effort will focus on the development of a plugin for image analysis. The plugin
proposed for development is the Emboss Filter.

D. Expected Difficulties
The development challenges are twofold. First, for the new plugin, an emboss algorithm needs
to be developed. Several sources are available that can be used as either pseudocode or a “go-
by” for developing the emboss filter. The second challenge will be developing a plugin that
meets the integration requirements of the MIPF. Although the intent of MIPF is to create a
seamless integration platform, for development purposes, some slight modifications of the MIPF
framework will be required to implement new plugins.

Currently, as has been observed, the addition of plugins is not fully abstracted nor does it
subscribe to a Design Pattern neatly. There are some “hard fixes” to code that have to be made
in other classes in order to get a plugin to run properly in the MIPF development environment.
This includes a need to update all “.jar” libraries (i.e., folders) with updated plugins.
Opportunities to make the MIPF more loosely connected will be identified during the course of
the plugin development.

6

III. Software Requirements Specification (SRS)

A. Introduction
1. Product Overview

Marvin Image Processing Framework (MIPF) is an open source image processing framework
developed in Java. It provides various image analysis and processing plugins that run in the
common framework. MIPF provides the following features:

o Manipulate images
o Manipulate captured video frames
o Multithreading image processing
o Integrate plugins with Graphical User Interface(GUI)
o Analyze plugin performance
o Extend features via plugins
o Unit test automation

Currently, there are 44 plugins available for a wide range of different purposes. MIPF is
currently in the Beta state of development. Although multiple plugins have been developed,
the MIPF development team has identified several new plugins that need to be developed.
The following requirements focus on the development of one plugin to be developed, the
Emboss Filter (EF).

2. Purpose of the Requirements Document
The purpose of the requirements document is to specify the user requirements and the
system requirements for the EF plugin for MIPF. The user requirements will specify how the
EF will be used inside MIPF and what options will be available to adjust the elements or
characteristics of embossing digital images. The system requirements will specify MIPF
system requirements to integrate the EF plugin within the MIPF.

3. Scope of the Project
The scope of this project will involve developing an EF plugin for MIPF. It will involve several
steps that will conclude with the addition of the EF plugin to the MIPF plugin library. These
steps will include:

o Research of EF algorithms.
o Selection of EF algorithm for the plugin.
o Development of Java code for the EF plugin.
o Testing of the EF plugin in MIPF.
o Final integration of EF with MIPF.

4. References
Friesen, J. 2005. Java Tech: Image Embossing
http://today.java.net/pub/a/today/2005/12/08/image-embossing.html

7

Java World’s Daily Brew. 2009. Introducing an emboss effect to JavaFX
http://www.javaworld.com/community/node/2854

BufferedImage Emboss. 2009
http://www.java2s.com/Code/JavaAPI/java.awt.image/BufferImageemboss.htm

5. Definitions and Abbreviations
Emboss - to raise or represent (surface designs) in relief.
MIPF – Marvin Image Processing Framework.
ME – Marvin Editor.
Plugin - An accessory software or hardware package that is used in conjunction with an
existing application or device to extend its capabilities or provide additional functions.

B. Overall Description
1. Product Perspective

The EF plugin will operate in the MIPF much like the other plugins. Images will be imported
into the MIPF viewer (either the Editor or TestPlugin) and “embossed” with the EF plugin.
Users will have an option to reset the to return to the original image. Or, users can keep the
embossed image and save it.

2. Product Functions
The EF plugin will have several options to vary the degree of embossing; however, for this
development, they will be functionless due to developer preferences for the moment. These
include: Azimuth, Elevation, Depth. The Azimuth controls the angle of the light source to
the direction of embossing (for example: from the N, NE, E, SE, S SW, W, NW) by moving the
light source and its orientation to an embossed pixel. The elevation will control the height of
light source to the image surface. The Depth will control the exaggeration of pixel values.
Figure III.1 shows an example of the EF tool on an image (projected behavior).

Figure III.1 – Original and “embossed” image.

8

3. User Characteristics
Users of MIPF are interested in image processing, editing, and refinishing. They prefer a
wide range of image filtering tools also for creating custom “looks” of original images. The
EF plugin is another “tool in the toolbox” for users. Users prefer options to see image filters
in draft mode before final filters are applied to the original or have an option to reset to the
original image.

4. General Constraints
The EF will be used to process static images.

5. Assumptions and Dependencies
Original images will be common file types including JPG, TIF, and PNG.

C. Specific Requirements
1. Functional Requirements

The user will be able to select the EF function from the main menu, under the Filter menu
item. When selected, the image shall be embossed (a temporary copy). The user will have
an option to save the embossed image or reset to the original.

a. General Requirements
Within the Marvin framework, users have several options to apply the Emboss filter.
Developers can use the TestPlugin for testing plugins, which will assist with iterative
developments of the EF plugin. The MarvinFramework functions more like COTS
whereby users can select any of the plugins from drop-down menus. Requirements
include:

i. Developers will use the TestPlugin to develop and test the EF plugin.
ii. General users will run the EF plugin using the MarvinEditor, which represents a

COTS implementation of the Marvin software.

2. Non-Functional Requirements
The MIPF is can be developed in the Eclipse IDE if installation instructions are followed (see:
http://www.marvinproject.org)

a. General Requirements
i. REQ-1 - Code for the EF shall be written in Java.

ii. REQ-2 – The MIPF framework shall run on any JVM, version 1.6 and higher.

9

D. Other Requirements
If running inside the Eclipse IDE, specific library references must be set up correctly in order to
function properly. Developers should follow Marvin setup tutorial to configure Eclipse for
development purposes.

10

IV. Test Plan

A. Test Plan
The test plan for the Marvin Framework Emboss filter will consist of testing an image embedded
with the Marvin framework called “toucano”. This image represents good variation in shapes
and colors to test the emboss filter. It will also include a visual inspection of the code and bug
tracing. In addition, three idealized images will be tested to evaluate the EF plugin with
variations in colors, geometric shapes, and lines.

1. Image Test - Check/Comparison
The test images will be embossed using the EF filter. They will be reviewed for consistency
of the expected “embossed” look. The visual inspection will evaluate if the light position
(i.e., default position of top left corner of image) was appropriately applied on the
embossed image edges and surfaces.
.

2. EF Code Testing Process
The code will be inspected visually for consistency with Marvin Framework code interface
requirements. Also, a debugging trace will be used within Ecclipse to trace threads, states,
and the flow of control as it is stepped into/from the Marvin Framework.

B. Requirement List

1. Image Processing
A typical image like “toucano” can be processed by the EF plugin without crashing the
system. The same requirement applies for the idealized cases.

2. Expected Results
The test “toucano” image should be embossed correctly. The idealized cases should be
embossed correctly, but the emphasis is also on variation of colors, shapes, and line weights
within images.

3. Pass/Fail Criteria
Pass – Images embossed correctly with correct edge lighting and shadowing.
Fail – Images embossed incorrectly, did not emboss, or MIPF failed.

C. Tested Items

1. Tested Items
The “toucano” image with variable edge features and colors will be tested with the EF
plugin. In addition, three idealized cases will be tested.

11

2. Testing Schedule
The “toucano” and idealized images will be tested with a mask to compare the original with
the embossed version. The testing will be completed within 1 day.

3. Test Recording Procedures
Original images will be embossed with a mask that is smaller than the embossed image. In
addition to being a useful future feature of the EF plugin, this will be useful for a
check/comparison of results along edges and surfaces to compare embossed versus original
areas of the image.

4. Hardware and Software Requirements for implementing tests (be specific)
There are no known hardware limitations; however, a machine with a video card would be
useful if large volume batch image processing were to be done using the Marvin EF plugin.

5. Constraints to the Testing Process
Images are going to be tested manually. For more thorough testing, Marvin would have to
be modified to run in batch mode and several thousand images would have to be tested.
Results would have to be analyzed using automated pixilation comparison techniques to
verify that the EF function performed the bitwise RGB shift required to generate the emboss
look.

12

V. Test Report
A test was done to evaluate the Emboss filter, which consisted of evaluating the function on a
representative image and three idealized images. The default Marvin “toucano” image was
used for the test and provided a broad range of color spectrums and contrast (i.e., black versus
white) to test the embossing functionality. An image mask was included to provide an ability to
visually inspect along image boundaries and compare if image features were embossed correctly
(a “quasi-“ before and after comparison). As shown in Figures IV.1 through Figure IV.6, the tests
were completed and the EF passed based on expected emboss effects. However, some edge
effects were observed, which may be attributed to the original image resolutions. Table IV.1
summarizes the test procedure.

A bug trace was used at the inception of the Emboss Filter. Results indicate that the entry into
and exit from the EF was correct and no errors were reported. Further bug tracing in Eclipse
while stepping into the EF showed it behaved as expected and processed the “toucan” image
correctly.

Table IV.1 – Test form of EF in the Marvin framework.

Test Case

Requirement Number C.1 Status: Complete

Description Emboss filter should emboss digital images (real and idealized cases).

Conditions Test conducted on Windows XP, JVM, version 1.6, on Ecclipse IDE.

Pass Criteria
Images were embossed and compared with other embossing tools for
verification.

Test Information

Name of Tester: Chris Mack Date: 26-Nov-11

Version: Beta Time: 2100

Test Results

Action Expected Results Pass Fail N/A Comments

Executed EF on (5)
images

Images embossed. X
Image comparison verified
correctness.

13

Figure IV.1 – Runtime test results within Ecclipse with the Marvin EF and the “toucan” image.

Figure IV.2 – Before and after embossing (using EF plugin) test results on the “toucano” image.
Note, the “illumination” is from the top left edge and edges appear to mimic the appropriate
brightening and shadowing edge effects. Also, the greyscaling of colors appears correct.

14

Figure IV.3 – Before and after embossing (using EF plugin) test results on the idealized case No. 1 image
(i.e., testing color variations). Note the edge effects on red and green colors (possibly caused by image
resolution).

15

Figure IV.4 – Before and after embossing (using EF plugin) test results on the idealized case No. 2 image
(i.e., testing geometric shapes and line weights). Note edge effects on green (w/black lines).

16

Figure IV.5 – Before and after embossing (using EF plugin) test results on the idealized case No. 3 image
(i.e., testing graduated color variations). Note the variability in depth and some edge effects.

17

Figure IV.6 – Before and after embossing (using EF plugin) test results on the idealized case No. 4 image
(same image as No. 3, but mask splits near center). Note the variation of edges and depths of
embossment.

18

VI. Software Architecture

A. Marvin EF Framework – Class Diagram
Marvin uses several Java SWING classes to create the Marvin Framework upon which new
plugins can be developed and added. Figure VI.1 depicts the general class diagram of the EF
plugin and how it is implemented within the MIPF.

Figure 1 - UML Diagram of the Marvin Plugin Framework and Emboss filter

Marvin extends the JFrame class and adds components to a JPanel similar to the Decorator
Design Pattern. Components such as the menu items (to execute plugins), buttons, and button
listeners are also added. When an event is triggered (i.e., selection of a plugin tool), an
EventListener passes this on to the appropriate plugin for processing an image.

The Emboss filter extends the MarvinAbstractImagePlugin, which implements the MarvinPlugin
interface. The EF processes the image by applying the emboss algorithm, then calls a “show”
method to display it in the Marvin image panel.

B. Developer’s and User’s Framework – Use Case Diagram
To add a new plugin to Marvin, developers develop the plugin as a separate class (in this case,
Emboss.java), which will be exported to a “.jar” library of all Marvin plugins. The developer will
be required to edit the client program (in this case the TestPlugin) to provide access to images to
be processed. The developer will develop the plugin code, which handles all processing of the
image explicitly and creates a new image that is rendered according to the plugin algorithm that
is implemented.

19

Users who want to use the Marvin plugins, can access them through a client program that is
modified to run all active plugins (active in the sense that they have been updated and added to
the “.jar” library folder). Or in the example below used to develop the EF, users can run the
plugin from a test class provided within the MarvinPlugin package called TestPlugin.

Figure 6.2 – Use case diagram of development and use environment.

C. MIPF Framework – Layer Architecture
Figure 6.3 depicts a layer architecture of the MIPF. From this perspective, there are essentially
three layers of focus: Applications, Plugins, and the Framework. The framework provides classes
for GUI, I/O, multithreading, and video stream capture. The Applications are specialized
features that include pattern recognition, filtering applications, the MarvinEditor, and video
game prototyping. The Emboss Filter will reside in the Plug-ins layer, which provides a broad
spectrum of image processing functions to MIPF.

Figure 6.3 – Layer architecture of the MIPF.

20

VII. Software Design

A. Introduction
1. Purpose

This software design document describes the architecture and system design of the Emboss
Filter (EF) plugin for the Marvin Image Processing Framework (MIPF).

2. Scope
The EF plugin allows users of the MIPF to apply an embossing filter on images. There is
additional capability to apply the emboss filter to a selected region of the image if needed
via a mask that is set by the left corner, width, and height of the rectangular mask.

3. Overview
This document provides the details of the Marvin EF system architecture, design algorithm,
and design elements.

4. Reference Material
Friesen, J. 2005. Java Tech: Image Embossing.
http://today.java.net/pub/a/today/2005/12/08/image-embossing.html

Java World’s Daily Brew. 2009. Introducing an emboss effect to JavaFX
http://www.javaworld.com/community/node/2854

BufferedImage Emboss. 2009
http://www.java2s.com/Code/JavaAPI/java.awt.image/BufferImageemboss.htm

5. Definitions and Acronyms

Emboss - to raise or represent (surface designs) in relief.
MIPF – Marvin Image Processing Framework. This is the software package upon which the
Emboss Filter plugin was developed.
ME – Marvin Editor.
Plugin - An accessory software or hardware package that is used in conjunction with an
existing application or device to extend its capabilities or provide additional functions.
EF – Emboss Filter. This is the plugin for MIPF developed to apply an emboss effect to
images.

21

B. System Overview
The MIPF is designed to be a flexible image processing framework that is scalable to new plugins
for image processing. The intent of MIPF is for developers to be able to focus on developing
plugins that can be added almost seamlessly without editing a lot of code in the MIPF.

C. System Architecure

1. Architectural Design
The basic premise behind the architecture of the MIPF is to provide an ability to add plugins
easily without having to modify the MIPF. Plugins, as long as they follow the same pattern
as other plugins, should function properly. Figure VII.1 depicts the architecture design of
MIPF. It consists of a repository of plugins (e.g., Emboss Filter), which are referenced by
their “.jar” string name signature. The MIPF applies them to the image framework and takes
care of the framework overhead like a layout container.

Figure VII.1 – General architecture of the MIPF and library of plugins (e.g., Emboss Filter).

2. Decomposition Description
Figure VII.2 depicts the class structure of the Emboss Filter. The emboss filter produces an
image that is greyscale and appears to have raised elements, much like is done when
physically embossing an image on a plate of metal. To create this effect digitally, uniform
adjustments (or pixel calculations) of RGB color bits (or shifts in value) are made. Friesen
(2005) describes the algorithm applied as follows:

Think of an image as mountainous terrain. Each pixel represents an elevation:
brighter pixels represent higher elevations. When an imaginary light source shines
down on this terrain, the uphills that face the light source are lit, whereas the
downhills that face away from the light source are shaded. An embossment
algorithm captures this information.

The algorithm scans an image in the direction that a light ray is moving. For
example, if the light source is located to the image's left, its light rays move from left
to right, so the scan proceeds from left to right [and top-to-bottom]. During the scan,
adjacent pixels (in the scan direction) are compared. The difference in intensities is
represented by a specific level of gray (from black, fully shaded, to white, fully lit) in
the destination image.

22

…
After obtaining the red, green, and blue intensities for the current pixel and its
upper-left neighbor, …calculate the difference in each intensity. The upper-left
neighbor's intensities are subtracted from the current pixel's intensities because the
light ray is moving in an upper-left to lower-right direction. Identify the greatest
difference (which might be negative) between the current pixel and its upper-left
neighbor's three intensity differences. That's done to obtain the best-possible
chiseled look. The difference is then converted to a level of gray between 0 and 255,
and that gray level is stored in the destination image at the same location as the
current pixel in the source image.

Figure VII.2 – The Emboss Filter is a java class that performs the emboss filter and “shows” it
in the Marvin JPanel.

3. Design Rationale
Additional functionality is capable to add to the Emboss filter. This could include parameters
such as the elevation, depth, and azimuth with respect to the light sources as depicted in
Figure VII.3. The EF plugin currently does not have this functionality and was thought by the
developers of MIPF to exceed their needs. However, for future potential, slide mechanisms
have been embedded, but are functionless at the moment as shown in Figure VII.4.

23

Figure VII.3 – Additional variable parameters that could be included with an emboss filter function (e.g.,
Depth, Elevation, and Azimuth).

Figure VII.4 – Additional variable parameters Azimuth, Elevation, and Depth within the Emboss Filter
plugin (currently functionless in the MIPF).

24

D. Data Design

1. Data Description
Images in MIPF can be selected from any source such as folders accessible by the OS.
Images processed by MIPF can be stored in the same locations or other locations accessible
by the OS. Current image formats supported include JPG, TIF, and PNG.

2. Data Dictionary
Emboss Class – This is the class that implements the emboss algorithm. It provides a
process method that creates the new image from the pixel calculations. It has a show
method that displays the new image that has been embossed.

E. Component Design
Friesen (2005) provides a pseudo code for an embossing algorithm. It involves a pixel value shift
for each of the pixel values to replicate a fixed top-left light location for the image. Additional
functionality to adjust the location of the light source (i.e., elevation, depth, and azimuth) is not
yet functional in the Emboss Filter coded for Marvin in this document. The pseudo code
(Friesen, 2005) is as follows:

FOR row = 0 TO height-1
 FOR column = 0 TO width-1
 SET current TO src.rgb [row][column]

 SET upperLeft TO 0
 IF row > 0 AND column > 0
 SET upperLeft TO
 src.rgb [row-1][column-1]

 SET redIntensityDiff TO
 red (current)-red (upperLeft)
 SET greenIntensityDiff TO
 green (current)-green (upperLeft)
 SET blueIntensityDiff TO
 blue (current)-blue (upperLeft)

 SET diff TO redIntensityDiff
 IF ABS (greenIntensitydiff) > ABS (diff)
 SET diff TO greenIntensityDiff
 IF ABS (blueIntensityDiff) > ABS (diff)
 SET diff TO blueIntensityDiff

 SET grayLevel TO
 MAX (MIN (128 + diff, 255), 0)

 SET dst.rgb [row][column] TO grayLevel
 NEXT column
NEXT row

25

F. Human Interface Design

1. Overview of User Interface
The Emboss plugin is contained at the top-level in the Filters menu and is then available via
the Color submenu within the Marvin framework display tool. The menu names correspond
also to the development environment with respect to plugin package and path names and
provide for a systematic code logic.

2. Screen Images
As shown in Figure VII.5, the EF is available from a drop down submenu within the Marvin
framework display tool.

Figure VII.5 – User menu for accessing the Emboss Filter plugin in Marvin.

3. Screen Objects and Actions
Like many COTS image processing tools, the Marvin framework arranges plugins based on
top-level functionality. In this case, the EF is a filter and doesn’t alter the physical shape of
pictured elements, but does change the pixel values to create the emboss effect. Based on
experience with other image processing programs such as Adobe Photoshop and GIMP, the
arrangement of menus and submenu items is consistent and reasonable for the user to
navigate.

26

4. Requirements Matrix

Requirement Number Description

REQ-1
Code for the EF will be written in Java.

REQ-2
The MIPF framework shall run on any JVM, version 1.6
and higher.

27

VIII. Submitted Code Patch

The code for the Emboss Filter is as follows and is highlighted in yellow indicating where new code was
developed. This was based on the Invert Filter plugin and was modified to provide the emboss effect.
Note, a video of the execution of the EF in Marvin is provided with an accompanying disc with this
report along with all source code for the MIPF.

---------- Emboss.java ----------

/**
Marvin Project <2007-2009>

Initial version by:

Danilo Rosetto Munoz
Fabio Andrijauskas
Gabriel Ambrosio Archanjo

site: http://www.marvinproject.org

GPL
Copyright (C) <2007>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/

package org.marvinproject.image.color.emboss;

import marvin.gui.MarvinFilterWindow;
import marvin.image.MarvinImage;
import marvin.image.MarvinImageMask;
import marvin.plugin.MarvinAbstractImagePlugin;
import marvin.util.MarvinAttributes;

/**
 * Invert the pixels color to create an emboss effect.
 * @author Chris Mack / Gabriel Ambrosio Archanjo
 * @version 1.0 02/28/2008
 */
public class Emboss extends MarvinAbstractImagePlugin
{

MarvinAttributes attributes;

public void load(){
attributes = getAttributes();
attributes.set("azimuth", 0);
attributes.set("elevation", 0);
attributes.set("depth", 0);

}

28

public void show(){
MarvinFilterWindow l_filterWindow = new MarvinFilterWindow("Emboss", 400,450,

getImagePanel(), this);
l_filterWindow.addLabel("lblAzimuth", "Azimuth:");
l_filterWindow.addHorizontalSlider("sliderBrightness", "azimuth", -127, 127, 0,

attributes);
l_filterWindow.newComponentRow();
l_filterWindow.addLabel("lblElevation", "Elevation:");
l_filterWindow.addHorizontalSlider("sliderBrightness", "elevation", -127, 127, 0,

attributes);
l_filterWindow.newComponentRow();
l_filterWindow.addLabel("lblDepth", "Depth:");
l_filterWindow.addHorizontalSlider("sliderBrightness", "depth", -127, 127, 0,

attributes);
l_filterWindow.setVisible(true);

}

public void process
(

MarvinImage a_imageIn,
MarvinImage a_imageOut,
MarvinAttributes a_attributesOut,
MarvinImageMask a_mask,
boolean a_previewMode

)
{

int depth = (Integer)attributes.get("depth");

// TODO: remove the two lines below. It's just for testing masks
a_mask = new MarvinImageMask(a_imageIn.getWidth(), a_imageIn.getHeight());
a_mask.addRectRegion(10, 10, 250, 450);

boolean[][] l_arrMask = a_mask.getMaskArray();

int r, g, b;
for (int x = 0; x < a_imageIn.getWidth(); x++) {

for (int y = 0; y < a_imageIn.getHeight(); y++) {
if(l_arrMask != null && !l_arrMask[x][y]){

a_imageOut.setIntColor(x, y, a_imageIn.getIntColor(x, y));
continue;

}

int rDiff=0;
int gDiff=0;
int bDiff=0;

 if (y > 0 && x > 0){

 // Red component difference between the current and the upperleft
pixels

 rDiff = a_imageIn.getIntComponent0(x, y) - a_imageIn.getIntComponent0(x-
1, y-1);

 // Green component difference between the current and the upperleft
pixels

 gDiff = a_imageIn.getIntComponent1(x, y) - a_imageIn.getIntComponent1(x-
1, y-1);

 // Blue component difference between the current and the upperleft
pixels

 bDiff = a_imageIn.getIntComponent2(x, y) - a_imageIn.getIntComponent2(x-
1, y-1);

 }
 else{
 rDiff = 0;
 gDiff = 0;
 bDiff = 0;
 }

29

 int diff = rDiff;
 if (Math.abs (gDiff) > Math.abs (diff))
 diff = gDiff;
 if (Math.abs (bDiff) > Math.abs (diff))
 diff = bDiff;

 int grayLevel = Math.max (Math.min (128 + diff, 255),0);

 a_imageOut.setIntColor(x, y, grayLevel, grayLevel, grayLevel);

}
}

}
}

