Aalto University
School of Science
Master’s Programme in Computer, Communication and Information Sciences

Aleksandra Zhuravleva

Progressive Web Camera Application
using OpenCV WebAssembly module

Master’s Thesis
Espoo, June 11, 2020

Supervisor: Prof. Petri Vuorimaa, Aalto University
Advisor: Rijubrata Bhaumik, Intel Corporation

A' Aalto University
]
Aalto University
School of Science

Master’s Programme in Computer, Communication and ABSTRACT OF

Information Sciences MASTER’S THESIS
Author: Aleksandra Zhuravleva
Title:
Progressive Web Camera Application using OpenCV WebAssembly module
Date: June 11, 2020 Pages: ix + 65
Major: Computer Science Code: SCI3042
Supervisor: Prof. Petri Vuorimaa, Aalto University
Advisor: Rijubrata Bhaumik, Intel Corporation

The Web platform is a low friction, linkable and universal platform where users
can create powerful applications using JavaScript and expect it to run everywhere.
However, most of the powerful camera applications or media capture solutions
are implemented using native technologies for that platform.

This thesis presents WebCamera application with computer vision capabilities
performed by OpenCV library. A set of use cases include Instagram filters, Card
scanning, Emotion recognition and others. The WebCamera is designed as a pro-
gressive web application to provide native-like features such as app installation,
offline mode and responsive screen size.

OpenCV is built by Emscripten compiler in WebAssembly module to achieve
near-native speed on the web thanks to SIMD and threads optimization options.
Measured performance statistics demonstrate that these optimizations allow us to
reach up to 9x speedup compared to not optimized OpenCV version in a browser.

WebCamera demos are showcased at Chrome Dev Summit 2019 in the talk about
WebAssembly. Moreover, V8 engine's web page called ” Fast, parallel applications
with WebAssembly SIMD” presents WebCamera's use cases implemented in this
work.

Keywords: OpenCV, WebAssembly, progressive web application, com-
puter vision, image processing, face detection, card scanning,
document enhancement, emotion recognition, color segmen-
tation

Language: English

11

Acknowledgements

I would like to express my deepest gratitude to Prof. Petri Vuorimaa, my
supervisor from Aalto University, for carefully reading every draft and pro-
viding valuable feedback. His guidance and encouragement helped me while
writing this thesis.

Furthermore, this master's studies could not have been completed without
support and outstanding ideas of Rijubrata Bhaumik, my friend and advisor
from Intel Corporation. I want to thank Riju for giving me the opportunity
to work on WebCamera project and for leading me through every single step
of this research.

Last but not least, I wish to extend my special thanks to my family,
especially to my husband, for keeping me away from stress and helping me
to stay focussed and motivated during the challenging time. I appreciate the
optimism and love of my family supporting me in my personal development.

Espoo, June 11, 2020

Aleksandra Zhuravleva

111

Abbreviations and Acronyms

(GAY
ML

DL

Al
DNN
AR
Wasm
PWA
CPU
GPU
VPU
SIMD
pthreads
API

Ul
HTML
JS

CSS
FPS
HSV
RGB
RGBA
W3C
WOFF
SW
Workbox CLI
OCR

Computer Vision

Machine Learning

Deep Learning

Artificial Intelligence

Deep Neural Network
Augmented Reality
WebAssembly

Progressive Web Application
Central Processing Unit
Graphics Processing Unit

Vision Processing Unit

Single Instruction Multiple Data
POSIX threads

Application Programming Interface
User Interface

HyperText Markup Language
JavaScript

Cascading Style Sheets

Frames Per Second

Hue, Saturation, Value

Red, Green, Blue

Red, Green, Blue, Alpha

World Wide Web Consortium
Web Open Font Format

Service Worker

Workbox Command Line Interface
Optical Character Recognition

v

Contents

Abbreviations and Acronyms iv
1 Introduction 1
1.1 Background and Motivation 1
1.2 Thesisaim 4
1.3 Thesis structure 5

2 Related work 6
2.1 Review of CV libraries 6
2.2 Existing CV applications 9

3 Environment 11
3.1 OpenCV 11
3.1.1 Building and using OpenCV 12

3.1.2 Haar Cascade classifier 13

3.1.3 Fisherfaces recognizer 15

3.1.4 Changing Colorspaces 16

3.1.5 Image Thresholding 17

3.1.6 Smoothing Images 18

3.1.7 Morphological Transformations 19

3.1.8 Image Gradients 21

3.1.9 Canny Edge Detection 22

3.1.10 Histograms 22

3.2 WebAssembly and Emscripten 24
3.3 PWA . . . 25

4 Implementation 29
4.1 WebCamera implementation 29
4.1.1 Userinterface 29

412 Usecaseworkflow 31

4.1.3 Media capture initialization 32

4.2 Instagram Filters 000000
4.3 Face Detection 0oL
44 Funny Hats
4.5 Card Scanning

4.7 Emotion Recognitiono
4.8 Invisibility Cloak

4.6 Document Enhancement
5 Results

5.1 Demos in a browser

5.2 Performance statistics

6 Discussion

6.1 Analysis of performance statistics

6.2 WebCamera limitations

6.3 Future work

7 Conclusion

vi

44
44
48

51
o1
23
o4

56

List of Figures

1.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

5.1
2.2
2.3
5.4
2.5
2.6
2.7

Computer vision practical applications 2
Haar Cascade features 14
HSV color representation 16
Image Thresholding 18
Image Blurring 20
Morphological transformations 20
Histogram Calculation 23
Histogram Equalization 23
Chrome flags for WebAssembly SIMD and threads optimizations 26
User interface 30
High-level flowchart of a use case 31
Flowchart of Instagram Filters 34
Flowchart of Face Detection 35
Flowchart of Funny Hats 36
Flowchart of Card Scanning 38
Reference OCR-A digits in Card Scanning demo 38
Step by step card filtering 39
Flowchart of Document Enhancement 40
Flowchart of Emotion Recognition 42
Flowchart of Invisibility Cloak 43
Controls for color segmentation 43
Face Detection in a browser 44
Funny Hats in a browser 45
Instagram Filters in a browser 45
Card Scanning in a browser 46
Document Enhancement in a browser 47
Emotion Recognition in a browser 47
Invisibility Cloak in a browser 48

Vil

5.8 Performance of OpenCV.js on the laptop running with differ-
ent number of threads

Viil

Listings

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
4.1
4.2
4.3
4.4

Download and build OpenCV.js 12
Initialize and load Haar Cascade model 14
Initialize and load Fisher Faces model 15
Install and activate Emscripten L. 25
Create Manifest file for PWA 27
Add Manifest file in the main HTML page 27
Workbox CLI commands to generate SW 27
Workbox configuration file 27
Register SW in HTML file 28
Meta tag for responsive app screen size 28
Find back and front camera sources 33
Get user media using mediaDevices interface 33
Apply OpenCV filters 34
Create transparent hat mask from Alpha channel 37

1X

Chapter 1

Introduction

1.1 Background and Motivation

Over the past decade, capturing and sharing of digital media has skyrocketed
due to the proliferation of smartphones, digital cameras and the popularity
of social networks. This immense trove of data, when labeled like ImageNet
dataset!, and the affordable computing resources, like GPUs (Graphics Pro-
cessing Units) or advancement in CPUs (Central Processing Units) such as
SIMD instructions, have made Computer Vision (CV) applications achieve
accuracies that surpasses human abilities.

CV is an interdisciplinary research field originating in the 1960s which
aims to learn and simulate tasks performed by the human visual system [7].
CV encompasses Machine Learning (ML) techniques and image processing
algorithms to derive and analyze meaningful information from digital me-
dia [17]. Common usages of CV (Figure 1.1) include face recognition, finger-
print matching, detection of suspicious human behavior, traffic lights analysis
in self-driving cars, virtual fitting rooms and many more.

Usually, client devices are equipped with hardware good enough for in-
ferencing, but sometimes heavier workloads are augmented by using edge or
cloud services such as Microsoft Azure Cognitive Services, Google Cloud Vi-
sion or Amazon Rekognition. As an example, Amazon Rekognition software
allows us to identify objects, people, text, scenes, and activities in images as
well as in videos or provide highly accurate facial analysis capabilities [23].
This might concern a privacy-aware user preferring data and computation to
happen on the client device itself.

Until recently, CV algorithms have been developed only for native appli-

TmageNet is a large visual database designed by Stanford University to use in object
recognition research.

CHAPTER 1. INTRODUCTION 2

cations, that is, for use on a particular platform or device, mostly because
the algorithms needed a lot of computation power. Using a native language
and platform provided better access to the hardware needed to compute the
workload. The universality and low friction aspects make the Web Platform
a true platform of choice for scaling to the masses. Web applications can
reach anyone, anywhere, on any device with a single codebase.

(Note: fingerprint images are from FVC2004 DB1 4-2 and 4-3)

(c) Fingerprint matching (d) Traffic lights analysis

Figure 1.1: Computer vision practical applications

Although CV is fairly new to the web platform development, plenty of
libraries have already been designed to be run in a browser. Some of the most
common examples of CV JavaScript libraries are Tensorflow.js, Tracking.js,
Jsfeat, WebGazer.js, Headtrackr, Clmtrackr and Three.ar.js [37, 65]. To
ensure better user experience, most of the libraries perform complex graphics
tasks by using WebGL, which is a JavaScript API (Application Programming
Interface) for rendering high-performance interactive 2D and 3D graphics |9,
11].

Until recently, JavaScript was the only language of choice to develop ap-
plications for the Web. A new portable binary instruction format called Web
Assembly (Wasm) is used alongside JavaScript for high performance and
compute-heavy workloads for the Web Platform [6]. Porting native libraries
to the Web Platform is accomplished using the Emscripten toolchain. Ex-
isting C, C++ or Rust projects ported to Wasm can be run on the web at

CHAPTER 1. INTRODUCTION 3

near-native speed thanks to SIMD and threads optimizations [22, 33].

Speaking of optimizations, SIMD instructions are a special class of in-
structions that exploit data parallelism by performing the same operation
on multiple data elements simultaneously. Therefore, compute-intensive ap-
plications, such as image processing, take advantage of the data level par-
allelism using the underlying hardware, thus, accelerating the performance.
WebAssembly SIMD proposal introduces a new v128 value type and a num-
ber of operations that utilize this type. [67]

Furthermore, most native applications implement parallel computing us-
ing threads, like POSIX threads (pthreads) in C/C++. WebAssembly threads
[31] are the Web platform equivalent of pthreads, a kind of threads that can
share the same Wasm memory accomplished by a JavaScript primitive called
SharedArrayBuffer [46]. SIMD and Web Assembly threads together have
bridged the performance gap between Web Platform and the native environ-
ment by a wide margin [8, 18]. OpenCV.js was one of the first frameworks
to utilize the power of SIMD and Wasm threads.

OpenCV [50] has been one of the stalwarts among the Image Processing
libraries from the advent. Moreover, OpenCV has added a Deep Neural
Network (DNN) module to further utilize a variety of ML models trained
by TensorFlow, Caffe, Torch and other ML frameworks [56]. Thus, OpenCV
library has very powerful functionality for both image processing and object
detection, so it is popular in commercial and open source projects, in industry
and academic environment [4].

In addition to the mentioned web technologies, Progressive Web Applica-
tions (PWA) are built and enhanced with modern web APIs to deliver native-
like capabilities, reliability, and installability to web platforms [59]. All ma-
jor browsers like Chrome, Edge, Safari, Firefox and Opera have shipped the
building blocks that collectively constitute Progressive Web Apps [16, 63].
PWA allows us to add a launcher icon on a phone’s desktop, exploit an app
in offline mode or receive push-notifications [16]. Plenty of well-known mo-
bile applications such as AliExpress, Twitter Lite, Uber, Spotify, Pinterest
already have a PWA equivalent [25].

All these developments for web platforms have contributed to the range
of web applications that is gradually expanding, including applications that
previously were only available as native apps. Nowadays, we can run such
popular apps as VLC media player [45] or AutoCAD computer-aided design
tool [44] completely in a web browser. However, there is still no popular web
camera counterpart for applications that are based on modern CV methods,
such as drawing virtual objects for a recognized face, scanning a credit card
or a document.

CHAPTER 1. INTRODUCTION 4

1.2 Thesis aim

The Web platform is a low friction, linkable and universal platform where
users can create powerful applications using JavaScript and expect it to run
everywhere. However, most of the powerful camera applications or media
capture solutions, such as video conferencing tools with Al capabilities, are
implemented using native technologies for that platform. For example, the
popularity of social networks like Snapchat and Instagram has given rise to
"Image Filters”. Similarly, Facebook Messenger provides a feature called
"Funny Hats”. Video conferencing solutions such as Skype or Microsoft
Teams offer advanced features like ”Face Detection” and ”Background Seg-
mentation”. These compute-intensive CV and image processing problems are
mostly executed on specialized hardware like GPU, VPU (Vision Processing
Unit) or some other Al accelerator.
In this context, the main research question of this work is:

e [s it feasible to create a CPU-based CV application for the web platform
in a fashion where there is a negligible loss of user-perceived quality?

Moreover, the thesis attempts to answer the following supporting ques-
tions:

e What are optimization methods for efficient code execution in a web
browser?

e Can a well-known OpenCV library be used to implement popular CV
and image processing tasks for the web platform? Does it have required
functionality?

¢ How to achieve a native-like experience for a web application?

Thus, the aim of this thesis is to develop a web camera application per-
forming CV and image processing tasks in a browser and utilizing only CPU
resources. In order to achieve this goal, the thesis will design and implement
the app in JavaScript using OpenCV library, PWA features, Emscripten tool
as well as WebAssembly format with SIMD and thread-based parallelism.
The thesis will explore available functionality of OpenCV to develop seven
popular media capture use cases in the application: Instagram Filters, Face
Detection, Funny Hats (virtual hats and glasses), Card Scanning, Document
Enhancement, Emotion Recognition and Invisibility Cloak (color segmenta-
tion).

CHAPTER 1. INTRODUCTION)

1.3 Thesis structure

The rest of the thesis is organized as follows. Chapter 2 reviews existing
CV libraries available for the web platform and CV applications related to
web camera experience. Chapter 3 introduces the environment and methods
applied in the application. Chapter 4 describes the implementation of each
web camera use case. Chapter 5 demonstrates the use cases in a browser
and presents performance statistics. Chapter 6 analyses results in terms of
performance based on different optimization options, discusses limitations of
the designed application and suggests improvements for future development.
Finally, Chapter 7 summarizes the work.

Chapter 2

Related work

This chapter reviews CV libraries for the web and existed CV applications.

2.1 Review of CV libraries

The number of CV and image processing frameworks is growing steadily. To
create WebCamera application, I need a robust and efficient library with a
comprehensive set of CV capabilities ranging from various image processing
algorithms to object detection and recognition. In this section, I introduce
OpenCV, review other popular CV libraries available for the web platform
and compare their functionality with OpenCV. I will not consider cloud-based
CV solutions like Microsoft Azure Cognitive Services, Google Cloud Vision
or Amazon Rekognition as they perform processing in data centers sending
user data over the Internet. Though, they provide JavaScript APIs for CV
and image processing tasks. Instead, I will focus on frameworks that utilize
the power of client machines demonstrating CV capabilities in a browser. It
can be either a Wasm version compiled from other programming languages,
framework with WebGL backend or plain Javascript library. Wasm provides
near-native execution in a browser thanks to efficient binary instructions
as well as SIMD and threads optimizations [6]. Read Section 3.2 to find
more details about Wasm format. WebGL represents a JavaScript API for
accelerated 3D graphics on the web utilizing GPU resources [9, 11].
OpenCV is an Open Source Computer Vision library started by Intel in
1999. The library functionality has been gradually expanding, and now it
contains more than 2500 of CV and image processing algorithms. Applica-
tion field of OpenCV is quite exhaustive and includes object identification
and segmentation, face and gesture recognition, motion tracking, augmented
reality, mobile robotics, egomotion estimation and many others. DNN mod-

CHAPTER 2. RELATED WORK 7

ule of OpenCV supports models generated by such ML frameworks as Caffe,
TensorFlow, Torch, Darknet, ONNX and Intel's Model Optimizer. OpenCV
is distributed under a BSD license, thus, it is widely used in academic and
commercial projects. [50]

Moreover, OpenCV is a cross-platform library as it provides support for
Windows, Linux, Mac OS and Android. The source code is written in C/+4+
languages, however, it has Python, Java and MATLAB interfaces as well
[50]. There are also unofficial wrappers for Rust, Ruby, Perl, Haskell, C#
and other languages. In 2017, OpenCV released JavaScript bindings making
available CV for the Web platform [51]. Thus, OpenCV.js can be ported to
either asm.js or Wasm format using Emscripten compiler.

Similar to OpenCV, there are other recognized frameworks with Wasm
backend, such as TensorFlow.js, ONNX.js, Keras.js and WebDNN, able to
detect and classify objects in a browser [10, 62]. These state-of-the-art solu-
tions combine powerful functionality to experiment with various ML models.
For example, they can effectively perform face detection, emotion recogni-
tion, pose estimation or semantic segmentation. In addition to model ex-
ecution, Tensorflow.js enables model training. While WebDNN is able to
run any neural network trained by TensorFlow, Keras, Caffe or Pytorch,
Keras.js accepts only Keras models, ONNX.js executes ONNX models, and
TensorFlow.js works with both TensorFlow and Keras models [10]. However,
the capabilities of these frameworks are limited to ML, Deep Learning (DL)
and Artificial Intelligence (AI) areas, so they don’t contain image processing
algorithms.

In contrast to the mentioned ML frameworks, quite popular CV libraries
like Tracking.js and JSFeat combine a wide range of algorithms for image
processing and only few methods for object detection. For instance, Track-
ing.js is capable of real-time color tracking, feature and object detection [43].
Object detection is based on Haar Cascades approach [43]. In addition to
Haar detector, JSFeat is able to detect objects using Brightness Binary Fea-
ture (BBF) technique. Similar to Tracking.js and JSFeat, other libraries,
such as Lena.js [32], CamanJS [42] and MarvinJ [24], perform some image
filtering like grayscale, thresholding, blurring or edge detection [70]. How-
ever, none of them provides either Wasm or WebGL backend, so they are
plain JS libraries.

Other less famous but still impressive CV libraries are WebGazer, Head-
trackr, Clmtrackr and Three.ar.js. They are pure JS libraries, however, they
use WebGL API, except for Headtrackr. Each library has a highly special-
ized focus. For example, WebGazer is an eye tracking solution that infers
eye-gaze locations of web visitors on a page [12]. It self-calibrates eye model
by evaluating how web visitors interact with a web page. While Headtrackr

CHAPTER 2. RELATED WORK 8

library offers functionality for a face and head tracking using the position
of user's head in relation to the computer screen [53], Clmtrackr provides
more precise face control and recognizes facial features including eyes, nose,
lips and brows via constrained local model fitted by regularized landmark
Mean-Shift [14, 54]. Finally, Three.ar.js combines helper classes for build-
ing Augmented Reality (AR) experience, i.e., real-time interaction with an
object in 3D environment [36, 40].

. . . . Last
Framework Github | Main contrib- Functionality WebGL | Wasm Plain commit
stars utor JS
date
OpenCV 44537 | Intel cv fmd 1nage pro- | N Yes Yes 15.05.20
cessing
TensorFlow.js | 13225 | Google Training and exe- |y Yes Yes | 16.05.20
J cuting ML models T
ONNX.js 1060 Microsoft Executing = ONNX Yes Yes Yes 01.06.19
models
Keras.js 4724 Leon Chen Executing various Yes No Yes 16.08.18
ML models
WebDNN 1714 | Lhe Univer- | Exccuting = DNN 'y, o Yes | Yes | 17.01.20
sity of Tokyo pre-trained models
Image processing,
tracking.js 8461 Eduardo feature and object | No No Yes 17.05.18
Lundgren X
detection
Image processing,
jsfeat 2531 Eugene. Za- feature and object | No No Yes 03.03.18
tepyakin .
detection
Lena.js 348 E;;Ildson Fel- Image filtering No No Yes 06.04.20
CamanlJS 3289 Ryan LeFevre | Image filtering No No Yes 20.02.20
Gabriel
MarvinJ 127 Ambrosio Image filtering No No Yes 24.07.19
Archanjo
WebGazer 2403 BrO\fvn Uni- Eye tracking No Yes Yes 08.08.19
versity
Headtrackr 3612 Audun Math- | Face track.mg and No No Yes 18.05.14
ias Oygard head tracking
Clmtrackr gogz | Audun Math- | Precise tracking of |\ Yes | Yes | 22.11.18
ias Oygard facial features
Three.ar.js 2413 Google Augm.ented reality No Yes Yes 02.03.18
experience

Table 2.1: Computer vision frameworks for the web

Table 2.1 summarizes reviewed libraries and presents some data including
Github stars, main contributors, core functionality, presence of Wasm or
WebGL backend and date of the last commit as of May 15th, 2020. In
contrast to OpenCV.js, most of the described CV libraries for the web utilize
WebGL API to perform compute-intensive tasks on GPU while OpenCV has
only Wasm backend, i.e., perform processing on CPU. However, OpenCV
encompasses more considerable functionality combining both ML capabilities

CHAPTER 2. RELATED WORK 9

and a wide range of image processing algorithms compared to presented
CV frameworks. It provides grained control for any kind of CV use case,
thus, it is a more suitable option for implementing WebCamera application.
WebCamera requires functionality for face detection and emotion recognition
as well as a number of image filters to perform such complex tasks as card
scanning and document enhancement. Later it may need even more features
to extend the app with new use cases. Therefore, OpenCV is an obvious
choice for WebCamera development in terms of available CV algorithms.
Moreover, it raises an intriguing research question on how efficiently it can
perform processing in a browser utilizing only CPU power.

2.2 Existing CV applications

Nowadays, CV applications surround us everywhere. It can be as simple
as face detection or as complex as road traffic analysis. A great number of
applications related to camera experiences, such as Instagram, Snapchat or
CamScanner, are built for mobile platforms like Android and iOS. Sometimes
CV features are integrated to apps as a service like "Funny hats” in Face-
book Messenger, face detection or background segmentation in Skype and
Microsoft Teams applications.

The next step forward in application development is to make these apps
cross-platform, e.g., develop them on the web, so that users can access them
from whichever device with an internet browser and feel that they still have
native-like features and performance. My research on existing solutions of
CV apps shows that there is still no web equivalent for a kind of Instagram
filters, Funny hats or document scanner that perform processing in a browser
but not in a cloud. Even Instagram, Snapchat and Facebook websites have
not implemented their CV features in a browser version. Moreover, lists of
popular PWAs [38, 41, 57| proves that while there are already plenty of handy
web applications for sport, news, traveling, etc., there is still no any kind of
native-like web camera application with CV capabilities. A couple of found
PWA examples [48, 61] demonstrate only image capture functionality.

However, there are some not PWA but still web demos of image filtering
using Lena.js [32], CamanJS [42] and MarvinJ [24] JS libraries. In addi-
tion, Tensorflow.js demonstrates ML use cases in a browser such as an image
classification, pose estimation, handwritten digit recognition and many oth-
ers [66].

Since I implement WebCamera application using OpenCV library, I mostly
rely on OpenCV tutorials and other existing solutions based on this library
including C++ and Python implementations because OpenCV API is similar

CHAPTER 2. RELATED WORK 10

for any supported programming language. I want to mention related work
that has most influenced my application and even served as the basis for some
use cases. The first work is OpenCV tutorial on image processing that gives
comprehensive code examples and descriptions for each filter [52]. The other
two important solutions are card scanning and document enhancement algo-
rithms developed in Python by Adrian Rosebrock from Pyimagesearch [60].
The next example is Facemoji emotion recognition project [30] written in
Python that uses Fisher Faces model (see Section 3.1.3 about Fisher Faces
algorithm). The last demo is Invisibility Cloak using color segmentation
through HSV color space.

Chapter 3

Environment

Up to this point, tools and methods used in this thesis have only been men-
tioned in a general context. This chapter introduces environment of the
work. The first section describes OpenCV library including building steps
and image prcessing algorithms applied in WebCamera app. The second sec-
tion familiarizes readers with WebAssembly format and Emscripten compiler
required to build OpenCV js file. The third section presents PWA features
integrated in the WebCamera.

3.1 OpenCV

OpenCV library contains more than 2500 of CV and image processing al-
gorithms. It is implemented as a collection of modules, where each module
is responsible for a subset of functionality [19]. For example, Core module
contains basic structures and calculations. Objdetect module provides object
detection algorithms like Haar Cascades. Imgproc module deals with image
processing like filtering, geometric transformations, color space conversion,
etc. DNN module is used for DNN inference and supports models generated
by Caffe, TensorFlow, Torch, Darknet, ONNX and Intel's Model Optimizer.
Contrib module is a module for a new contributions and contains the code
which does not have stable API or is not well-tested yet. So this module is
not a part of official OpenCV repository, however, it can be built with other
modules to enable new extra features like Fisher Faces recognition or Face
landmark detection.

In this section, I will describe steps to build OpenCV.js library as well
as some object detection and image processing algorithms that I use in
WebCamera application. Object detection is represented by Haar Cascades
and Fisher Faces algorithms. Image processing includes a set of filters like

11

CHAPTER 3. ENVIRONMENT 12

changing to gray or HSV colorspaces, thresholding, Gaussian/Median/Bilat-
eral smoothing, morphological transformations, image gradients, Canny edge
detection and histograms.

3.1.1 Building and using OpenCV

OpenCV.js is built from C++ code into either Asm.js or Wasm format by
Emscripten compiler [19]. T use Wasm version of OpenCV.js as it is more
compact and much faster than Asm.js. See Section 3.2 for more details about
Emscripten compiler and Wasm format.

Listing 3.1 presents a list of commands to download and build OpenCV
from source code. On the first line, I clone OpenCV repository from the
Github. On the second line, I navigate to the folder of the cloned project.
Finally, I execute build_js.py python script with arguments, where build_-
wasm is the name of the build forder, -—build wasm is a flag meaning that
I build Wasm but not Asm.js version of OpenCV, --threads and --simd
are optimization options, ——emscripten_dir is a path to Emscripten com-
piler. Threads and SIMD optimization options were released in 2019 and
demonstrate impressive performance for some OpenCV functions compared
to not optimized build. In section 5.2, I present performance statistics of
WebCamera use cases based on Threads and SIMD optimizations.

Listing 3.1: Download and build OpenCV.js

1] git clone https://github.com/opencv/opencv.git

cd opencv

3 ||python ./platforms/js/build_js.py build-wasm ——build-wasm
—threads —simd —emscripten_dir="<path to emsdk>/
emsdk /upstream /emscripten”

[\

For Emotion Recognition use case in WebCamera app, I use
FisherFaceRecognizer class from the Contrib module. To make this class
available in the build file, I have to provide a path to Contrib module and
JS bindings for FisherFaceRecognizer class in the build scripts. This can
be done with the following steps:

e Add "-DOPENCV_EXTRA _MODULES_PATH=
<path to contrib project>/opencv_contrib/modules" and
"-DBUILD opencv_face=0N" flags in build_js.py script

e Append ”js” inside ocv_define module of
opencv_contrib/modules/face/CMakelLists.txt file

CHAPTER 3. ENVIRONMENT 13

¢ Provide bindings of face module in embindgen.py script:

1| face = {

"face_FaceRecognizer’: [’train’, ’update’, ’'predict_label’,
"write’, ’read’, ’setLabellnfo’, ’getLabellnfo’, ’
getLabelsByString’, ’getThreshold’, ’setThreshold’],

3 "face_BasicFaceRecognizer ’: [’getNumComponents’, ’
setNumComponents’, ’'getThreshold’, ’setThreshold’, ’
getProjections’, ’getlLabels’, ’getEigenValues’, ’
getEigenVectors’, ’'getMean’, ’read’, ’write’],

4| ’face_FisherFaceRecognizer’: [’create’]

501}

e Add the face module to the makeWhiteList in embindgen.py script

Y

e Add "using namespace face;” in core_bindings.cpp file

To use OpenCV functions in JavaScript code, I need to load OpenCV.js
file and wait until initialization is completed. First, I create a script tag for
OpenCV.js in HTML file. Inside the tag, I add async attribute and provide
a path to OpenCV.js file as src attribute. Then, I assign onload event
listener to the script tag. Finally, I start image processing, when OpenCV.js
is loaded.

3.1.2 Haar Cascade classifier

Haar Cascades algorithm is an effective ML based method for object detec-
tion proposed by Paul Viola and Michael Jones in the 2001 [20]. This method
shows competitive precision rates [5] and even higher performance than some
neural networks [68]. Before I chose this approach, I also tested face detection
model trained by Caffe framework. The result showed that Haar Cascades
are 2-3 times faster than Caffe model. In some sources, Haar Cascade method
is also called Viola-Jones approach for object detection. I will focus on face
detection and discuss face features required for the algorithm.

Haar Cascade classifier is trained on a set of images labeled as positive
(with face) and negative (no face). The core basis of the classification is the
Haar-like features that use the change in contrast values between neighboring
groups of pixels to recognize the features [21]. The contrast is calculated for
a rectangular region of adjacent pixels as a sum so that the group of pixels is
represented as white or black rectangle as it is shown in Figure 3.1a. There
are three types of features called two-, three- and four-rectangle features.
In Figure 3.1b, I present two examples of face features. The first feature
relies on fact that the eyes region is darker than the nose and cheeks. The

CHAPTER 3. ENVIRONMENT 14

second feature assumes that the eyes are darker than the bridge of nose. By
subtracting the sum of white region from the sum of black region, I get the
feature value [21]:

FeatureValue = X(pizelsyackregion) — 2(DixelSpiackRegion) (3.1)

Since the most of the image is non-face area, Haar Cascades method
applies the features on the image in Cascade manner. In the first cascade or
stage, the algorithm checks one feature on the selected region. If the region
passes the stage, then, it goes to the next stage. If the region fails, then, the
algorithm no longer spends time on this region and moves to the next area,
thus, increasing the speed of the detection. The number of features for the
first five cascades is 1, 10, 25, 25 and 50, respectively. The total number of
features in all stages of the algorithm is 6061. [20]

: :. (a) Edge Features
I]: E (b) Line Features

(¢) Four-rectangle features

(b) Two face features

(a) Feature types

Figure 3.1: Haar Cascade features [20]

Listing 3.2: Initialize and load Haar Cascade model

faceCascade = new cv.CascadeClassifier();
faceCascade.load (faceDetectionPath);

= N

faceCascade.detectMultiScale (gray, faceVec);

OpenCV contains some pre-trained classifiers including face and eye de-
tection. I use haarcascade frontalface default.xml and haarcascade -
eye.xml models in Face Detection and Funny hats use cases of WebCamera
app. Listing 3.2 shows how to initialize Cascade classifier and load the model
from the XML file. On the third line of the listing, I run detectMultiScale(..)

CHAPTER 3. ENVIRONMENT 15

method of the loaded classifier to obtain a vector of faces from the input gray
image.

3.1.3 Fisherfaces recognizer

As it was mentioned in Section 3.1.2, OpenCV provides pre-trained Haar
Cascade classifiers for various types of detection like face, eye, body and
smile detection. However, it does not have models to recognize different
kinds of emotions apart from smile detection. I figured out that emotion
recognition is feasible in OpenCV using Fisher Faces model [35].

Fisherfaces approach is a face recognition method based on a concent of
Eigenfaces algorithm. Eigenfaces method applies Principal Component Anal-
ysis (PCA)! to extract image features, or in other terms, Principal Compo-
nents, maximizing the overall variance in data. PCA is often used to perform
dimensionality reduction. However, the disadvantage of this approach is that
it does not take into consideration class separability, i.e., it can throw away
components with valuable discriminative information. [1]

The Fisherfaces method aims to improve Eigenfaces technique, thus, it
uses Linear Discriminant Analysis (LDA) invented by R. A. Fisher in 19362
LDA is optimized for class separability as it finds a linear combination of
features that separates best between classes maximizing the ratio of between-
classes to within-classes variance, instead of maximizing the total variance [1].

In OpenCV, Fisherfaces algorithm is implemented in Contrib module,
so I have to complete some extra build steps mentioned in Section 3.1.1
to use Fisherfaces method. 1 found Fisherfaces recognition model trained
according to the steps described in ”Emotion Recognition With Python,
OpenCV and a Face Dataset” article [35]. Listing 3.3 demonstrates how to
initialize FisherFaceRecognizer class, load the model from the file and run
the recognition process to get emotion prediction label.

Listing 3.3: Initialize and load Fisher Faces model

fisherFaceRecognizer = new cv.face_FisherFaceRecognizer () ;
fisherFaceRecognizer .read(emotionModelPath) ;

=N =

prediction = fisherFaceRecognizer.predict_label (faceGray);

'PCA is a method used in exploratory data analysis and for making predictive models.
2In 1936, R. A. Fisher introduced the Iris flower data set as an example of discriminant
analysis in the paper ”The Use of Multiple Measurements in Taxonomic Problems”.

CHAPTER 3. ENVIRONMENT 16

3.1.4 Changing Colorspaces

Gray and HSV filters are based on changing image colorspace. Usually, im-
age color is stored in RGB format (Red Green Blue) or RGBA (Red Green
Blue Alpha), where Alpha channel is responsible for image transparency.
Overall, OpenCV has more than 150 color-space conversion methods, but I
will focus on (RGB — Gray) and (RGB — HSV) conversions. To convert
image from one color space to another, I use cv.cvtColor(...) function
where one of the function parameters specifies the code of conversion. For
example, to set (RGB — Gray) conversion, I need cv.COLOR_RGB2GRAY con-
version code. While RGB consists of three channels, Gray color space has
only one channel. So OpenCV multiplies RGB values of a pixel by the fol-
lowing coefficients and sums them into one value:

Y +0.299- R+0.587- G +0.114 - B, (3.2)

where Y is the final gray shade; R, G and B are Red, Green and Blue com-
ponents of a pixel [52].

Figure 3.2: HSV color representation

HSV model is an alternative representation of the RGB format, where
color channels stand for Hue, Saturation and Value (Figure 3.2). Hue at-
tribute describes the color where each color takes a certain range. For exam-
ple, in OpenCV.js, ranges of color shades are defined in the following way:
0-30 is blue, 30-60 is cyan, 60-90 is green, 90-120 is yellow, 120-150 is red
and 150-180 is magenta. Saturation expresses the amount of gray in a par-
ticular color so if this component is around 0 the image has a faded effect,
but if the value is max then the color is in purest (truest) version. The
Value component refers to the brightness or intensity of the color, where 0
is completely black, and max value reveals the most color. For HSV filter
the conversion code is cv.COLOR_RGB2HSV. Below are systems of equations
for (RGB — HSV) conversion:

CHAPTER 3. ENVIRONMENT 17

V' + maz(R,G, B)
V' —min(R,G,B .
.. {% (V' #0)

0 otherwise
60(G — B)/(V' —min(R,G, B)) if (V' =R)
H' + ¢ 120+60(B — R)/(V' —min(R,G,B)) if(V' =Q)
240+ 60(R — G)/(V' —min(R,G,B)) if(V'=B)

If H <0then H < H' + 360
Onoutput : 0 < V' <1,0< 8 <1,0< H <360,

where R, G and B are Red, Green and Blue components of a pixel; H’, S’
and V'’ are intermediate values of Hue, Saturation and Value, which are then
converted to the destination data type:

/

H
V<« 255-V' S+« 255-5" H <« > (to fit 0 — 255 range), (3.3)

where H, S and V are final values of Hue, Saturation and Value [52].

3.1.5 Image Thresholding

Two filters applied in my application are related to image thresholding. The
first one is Binary Threshold where destination pixel can get either white or
black color depending on whether the color of source pixel is higher than the
threshold value or lower. In the code, I call cv.threshold (...) function
with cv.THRESH BINARY thresholding type. In the UI, the threshold value is
configurable through the range slider.

However, in some cases, such as images with varying illumination, this
simple filter is not appropriate because the threshold value is set globally, i.e.,
it is a constant for the entire image. Figure 3.3a shows the image where some
areas are lighter than others, and Figure 3.3b demonstrates what happens
if I apply Binary Thresholding of 80. Part of the image is eliminated. The
threshold method presented below can process this case better.

The second filter that I will consider is Adaptive Threshold. This al-
gorithm fixes the problem explained above calculating threshold for small re-
gions of an image so that I have different thresholds for different areas. In the
WebCamera, [use cv.adaptiveThreshold(...) function with cv.ADAPTIVE -
THRESH _GAUSSIAN C option meaning that threshold value is calculated as the

CHAPTER 3. ENVIRONMENT 18

—. | [Aa-3F==]
1t B e =
ol ,?Ir f5[°
] !
w0 ,;
EPENH [17 :
LT Iskt | 1 (Bl i
7]) [413] | 1
| Is] |2 i
) 131 | {81
L1l [2[al 11 []
FTPFPT T P lswe

(a) Image with varying (b) Binary threshold (c) Adaptive threshold
illumination applied applied

Figure 3.3: Image Thresholding [52]

weighted sum of neighborhood values, where weights are a gaussian ker-
nel. There is also cv.ADAPTIVE _THRESH MEAN_C option in OpenCV where the
threshold value is the mean of neighborhood region. In the demo, user can set
block size of the filter, size of a pixel neighborhood that is used to calculate
a threshold value for the pixel. Figure 3.3c presents adaptive thresholding in
action.

3.1.6 Smoothing Images

Smoothing filters, also called blurring filters, belong to the category of low-
pass filters, which attenuates high-frequency signals. In general, the blurring
can be interpreted as calculating a pixel as the mean value of its neighborhood
pixels. I will focus on three image blurring filters provided by OpenCV:
Gaussian Blur, Median Blur and Bilateral Blur.

Gaussian filtering is based on Gaussian function for calculating the kernel,
which is applied to each pixel of the image:

—(2—pg)® | —(w—py)?

G(r,y) = Ae 2= 20y (3.4)
where G is Gaussian kernel function, coefficient A is the amplitude, p, is
the average of x, 1, is the average of y, o is the standard deviation, x is the
distance from the origin in the horizontal axis, y is the same in the vertical
axis [52]. Steps to calculate Gaussian blur for a destination pixel are the
following:

e Choose a central pixel and take a region of surrounding pixels

e Apply Gaussian kernel to each neighbouring pixel to get a square array
of weights

CHAPTER 3. ENVIRONMENT 19

e Multiply each neighbouring pixel by corresponding weight value
e Add up the values resulting from above multiplications

e Replace the value of central pixel with calculated sum

While the Gaussian blur algorithm calculates the average of the surround-
ing pixels, the Median blur filter just finds the median pixel from a region and
replaces the central pixel with the median. However, a drawback of Gaussian
and Median filters is that they smooth away the edges of an object. The Bi-
lateral filter can fix this problem, at least at a certain extent. Calculation of
Bilateral blurring is similar to Gaussian blurring, but in addition to weights,
there is also intensity component, which is measured between the neighbor-
ing pixels and the evaluated one. If there is a big difference in the intensity of
central pixel and its neighbors, then Bilateral filter does not apply blurring.
Thus, this filter blurs only uniform areas and preserves edges of the object
(see Figure 3.3a).

In OpenCV, I use cv.GaussianBlur(...), cv.medianBlur(...) and
cv.bilateralFilter(...) to run these filters. In the Instagram Filters
demo, user is able to change the kernel size for Gaussian and Median Blur
as well as diameter and sigma parameters for Bilateral blur using slider ele-
ments.

3.1.7 Morphological Transformations

Thresholding filters may bring numerous imperfections to the processed im-
ages. In particular, the binary regions of pixels can be omitted or distorted
after applied threshold. Morphological operations aims to remove these im-
perfections according to the form and structure of the image. Basically, they
are performed on binary images, i.e., images where each pixel has value of
either 0 or 1 (black and white color, respectively). The most fundamental
morphological operators are Erosion and Dilation, however, there are also
compound operators like Opening, Closing and Top Hat. Morphological
operators probe each pixel of the image using structuring element, which is
defined as a matrix of pixels and describes a shape of transformation, i.e.,
neighbourhood region. Usually, the structuring element takes the shape of
circle, square, diamond or cross, however, it can take any other shape as well.

Figure 3.5 depicts the result of some morphological transformations com-
pared to the original image. While background pixels are displayed as white
in this image, each pixel in the object is shown as black. Erosion operator is
used for reducing the objects contained in the input image. The basic idea
of this operator is that if the structuring element on an object pixel touches

CHAPTER 3. ENVIRONMENT 20

(b) Result of applying Bilateral kernel

Figure 3.4: Image Blurring [55]

a. Original b. Erosion c. Dilation d. Opening e. Closing

Figure 3.5: Morphological transformations [15]

a background pixel, it is changed into a background pixel. The Dilation is
straight opposite process — it expands the shapes contained in the input im-
age. In this transformation, a background pixel is assigned an object value if
the structuring element on a background pixel touches an object pixel. Thus,
the Erosion makes the object smaller and can break it sometimes into mul-
tiple object, while Dilation operator makes the object larger and can merge
multiple objects into one. Opening operator is the Erosion followed by the
Dilation. It can be used for noise removing. The Closing is reversed opera-
tion of the Opening, defined as Dilation followed by Erosion. This operation
is suitable for closing small holes inside the object. Top Hat operation is the
difference between input image and Opening of the image. [15]
cv.morphologyEx(...) function is responsible for morphology transfor-

CHAPTER 3. ENVIRONMENT 21

mation in OpenCV. I can pass an argument with the code like cv.MORPH -
ERODE, cv.MORPH DILATE, cv.MORPH OPEN, cv.MORPH _CLOSE or cv.MORPH -
TOPHAT to specify the type of opearation.

3.1.8 Image Gradients

Image Gradients are called High-pass filters emphasizing regions of high spa-
tial frequency. These filters are extensively applied in edge detection algo-
rithms, for instance, in Canny Edge detection described in the next section.
Image gradient techniques measure the change in intensity of a pixel in hori-
zontal or vertical direction. The idea is to check each pixel and calculate the
gradient vector, which points in the direction of largest possible intensity [52].
The length of this vector corresponds to the rate of intensity change in that
direction. Thus, if pixels have large gradient, they may represent possible
edges.

There are three types of Image Gradients in OpenCV called Sobel,
Scharr and Laplacian Derivatives. Corresponding functions are
cv.Sobel(...), cv.Scharr(...) and cv.Laplacian(...), respectively.
Sobel operator combines Gausssian smoothing and differentiation operation.
By default, it applies 3 x 3 convolution kernel either for x or y direction to
each pixel in the image:

+1 0 —1 +1 42 +1
Go= |42 0 =2/ %xA;G,=|0 0 0|=xA, (3.5)
+1 0 —1 -1 -2 -1

where A is the source image, G, and G, are images, which at each pixel
contain the vertical and horizontal derivative approximations, respectively
and * operation denotes the 2-dimensional signal processing convolution [52].
It is possible to configure kernel size through function argument in OpenCV.

Scharr derivative is alternative representation of Sobel filter, however, it
provides better result. Similarly, it uses two kernels, but they have different
weghts compared to Sobel kernels.

While Sobel and Scharr operators are first-order derivatives, Laplacian
filter calculates second-order x and y derivatives where each derivative is
found using Sobel operator [52]:

d?src 0%sre
Asre = 52 + o7 (3.6)

CHAPTER 3. ENVIRONMENT 22

3.1.9 Canny Edge Detection

Canny Edge algorithm developed by John F. Canny in 1986 [3] is widely
used technique for edge detection tasks because of its accuracy and reliabil-
ity. Canny Edge detector calculates the gradient magnitude of a pixel and
classifies it as edge if the gradient is larger than compared to neighboring pix-
els. A typical implementation of Canny Edge algorithm include the following
steps [52]:

Reduce the noise using Gaussian filter

Apply Sobel operator to determine intensity gradient of the image

Suppress the spurious response to edge detection to get rid of unwanted
pixels

¢ Remove weak edges by applying hysteresis thresholding

Input arguments of cv.Canny(...) function in OpenCV allow to control
the threshold values and Sobel kernel size. The result of the processing is
black image with white edges.

3.1.10 Histograms

In this section, I will focus on Histogram Calculation in OpenCV and
filters based on this process such as Histogram Equalization and His-
togram Backprojection. An image histogram is a graph or plot usu-
ally representing intensity distribution. Histogram Calculation process in
OpenCV is based on collecting pixel data and organazing it into a set of
bins. Thus, a histogram have predefined bins of pixel values on z-axis and
corresponding number of pixels on y-axis [52]. Figure 3.6 shows an example
of input image matrix where each pixel is assigned to its intensity value, and
calculated histogram where each bin represents a number of pixels belonging
to a certain range of intensity values. To calculate a histogram of intensity in
OpenCV, T use cv.calcHist(...) function. I can define histogram size, i.e.,
number of bins, and range of intensity values as arguments of this function.

Some images may have background and foreground that are both bright
or both dark. Therefore, the values on the histogram are confined to some
specific range while the histogram of normal image has values from all re-
gions. Histogram Equalization pursues the goal of improving the image con-
trast by modifying the image histogram [52]. The idea of this approach
is to stretch large peaks in histogram across the whole range of values so
that areas of lower local contrast gain a higher contrast (see Figure 3.7).

CHAPTER 3. ENVIRONMENT 23

84 O 43 28 »

88 E B 208 24400

bl b2 b3 b4 !:5 b6 b7 b8 b9 bl0b11bl2 b13 bl4 bi5 ble

DD pllogd RS 105 118 77

(b) Histogram representing intensity
distribution

(a) Image matrix with intensity values

Figure 3.6: Histogram Calculation [52]

This image enhancement is actively used in medical and satellite images.
cv.equalizeHist(...) function is called for Histogram Equalization in
OpenCV.

Figure 3.7: Histogram Equalization [52]

Histogram Backprojection method is suitable for object segmentation,
i.e., finding objects of interest in the image. The algorithm takes an image
histogram as input (color histogram is preferred over grayscale) and provides
an image where each pixel corresponds to the probability of that pixel be-
longing to the object of interest [52]. To apply Backprojection method in
OpenCV, I call cv.calcBackProject(...) function.

CHAPTER 3. ENVIRONMENT 24

3.2 WebAssembly and Emscripten

The demands of web applications are gradually increasing, so it is necessary
to expand the capabilities of the web platform. Until recently, JavaScript
was the only language for development on the web. However, it is not well-
equipped to meet some requirements of modern web applications in term of
security and performance [6]. To make code exectution in browsers more
safe and efficient, World Wide Web Consortium (W3C)? have implemented
a new portable, low-level format called WebAssembly or Wasm [6]. As of
2019, Wasm is supported by all major web browsers such as Chrome, Edge,
Safari, Firefox and Opera for both desktop and mobile devices [28].

Wasm standard defines a statically typed binary instruction set for a
stack-based virtual machine [69]. Tt is designed as a compilation target for
high-level languages like C, C++, Rust, C#, Go and others [69]. At the
moment, it works with 4 data types: 32-bit/64-bit integers and 32-bit/64-bit
floating-point numbers [69]. The initial core feature set of Wasm was based
on asm.js (Assembly JS) [13]. asm.js is strict subset of JS created by Mozilla
allowing browser engines execute it more efficiently by compiling it down to
machine code in optimized way [13]. It is generally accepted that Wasm is
the next evolutionary step of asm.js, so it is more fast and compact. However,
Wasm does not replace JS but runs alongside JS [47]. Wasm modules can be
loaded into JS app and executed at near-native speed [47].

As it is laborious to write Wasm code by hand, there is a bunch of tools to
produce Wasm files from different programming languages. They are devel-
oped at a rapid pace, and many of them are still in early stages. Emscripten
is the official, stable and most supported toolchain compiling C/C++ pro-
grams to asm.js and Wasm formats [22, 33]. Under the hood, Emscripten
uses LLVM (Low-level Virtual Machine) toolchain with Clang frontend for
C/C++ compilation and Binaryen compiler for asm2wasm conversion. Em-
scripten does even more than just compiling as it carries a lot of hidden
work. For example, it emulates a local filesystem for fopen() calls, wraps
OpenGL context with WebGL, provides memory management and Wasm-
compatible implementation of C standard library [64]. Projects, that have
already been ported to the Web using Emscripten, are ranging from appli-
cation frameworks like Qt to complex graphical engines such as Unity and
Unreal [33].

To port OpenCV source code written in C/C++ to OpenCV.js Wasm
format, I install Emscripten compiler. See Listing 3.4 with a list of commands

3W3C is an international community where Member organizations, a full-time staff,
and the public work together to develop Web standards.

CHAPTER 3. ENVIRONMENT 25

showing how to install and activate Emscripten on Linux. On the first line,
I clone Emscripten SDK project from the Github. On the second line, I
navigate to the cloned repository. On the third and fourth lines, I install
and activate the latest version of Emsdk package. Finally, I run emsdk -
env.sh script to set Emscripten path to the PATH environment variable.
These steps must be completed before executing OpenCV.js build script (see
Listing 3.1).

Listing 3.4: Install and activate Emscripten

git clone https://github.com/emscripten—core/emsdk. git
cd emsdk

./emsdk install latest

./emsdk activate latest

source ./emsdk_env.sh

QU = W N =

Recently, WebAssembly group have added SIMD and threads optimiza-
tions that significantly improve the performance. Wasm threads are accom-
plished with a JS primitive called SharedArrayBuffer [46]. It allows sharing
an ArrayBuffer's contents concurrently between Web workers similarly as
shared memory behaves on native platforms [31]. Thus, the code written in
C or C++ that uses pthreads, or any other multi-threading library based
on pthreads, can be compiled to Wasm and run in true threaded mode [31].
While threads allow more cores to work on the same data simultaneously,
i.e., perform task parallelism, SIMD instructions are a special class of in-
structions that exploit data parallelism. SIMD performs the same operation
on multiple data elements simultaneously. WebAssembly SIMD proposal in-
troduces a new v128 value type and a number of operations that utilize this
type [8, 67].

OpenCV community has enabled Wasm build with threads and SIMD op-
tions through --threads and --simd flags as it is shown on the third line of
Listing 3.1. In this thesis, I use Chrome browser to present WebCamera ap-
plication and measure performance of its use cases. To provide Chrome sup-
port for OpenCV.js with enabled threads and SIMD optimizations, I turned
on #enable-webassembly-threads and #enable-webassembly-simd expe-
rimantal flags in chrome://flags (see Figure 3.8).

3.3 PWA

The gap between native and web apps has been bridged by the Google Web
Fundamentals group with the help of emerging browser APIs and standards
for Progressive Web Applications. PWAs are defined by a set of concepts

CHAPTER 3. ENVIRONMENT 26

= O X
A Experiments X +
e C & Chrome | chrome://flags b e
Q, Search flags Reset all

® WebAssembly SIMD support.

Enables support for the WebAssembly SIMD

proposal. — Mac, Windows, Linux, Chrome 0S,
Android

#enable-webassembly-simd

@ WebAssembly threads support

Enables support for the WebAssembly Threads

proposal. — Mac, Windows, Linux, Chrome OS, Enabled v

Android

#enable-webassembly-threads

Figure 3.8: Chrome flags for WebAssembly SIMD and threads optimizations

and keywords such as progressive, responsive, connectivity independent, app-
like, safe, installable and linkable. PWA term was first coined by A. Russel
and F. Berriman in a blog post covering initial design ideas. Introduced
PWA features include offline support, background synchronisation and home-
screen installation. These PWA contributions unificate the mobile experience
bringing native-like features to cross-platform web applications and allowing
to work without Internet connection, receive push-notifications, install and
distribute web apps without marketplaces. [2]

To migrate my website to the application with native-like capabilities, I
integrated some core features of a PWA. The first feature is the app installa-
tion allowing user to add WebCamera icon to the home screen and have quick
access to it. When a user gets access to the app for the first time through
a mobile browser, the website shows a notification on the screen offering to
add WebCamera to the home screen. I can also install the app through the
three-dots menu of the browser tab. To control how my PWA is added to a
user’s home screen, I need to create the Manifest file (Listing 3.5) and add
it to the main HTML page (Listing 3.6) [58].

The second feature delivers offline experience meaning that app content is
cached and available regardless of Internet connection status. Service Worker
(SW) is the technology responsible for that feature. It runs on a separate
thread from the main JS code thus flexibly managing network requests. SW

CHAPTER 3. ENVIRONMENT

loads necessary files after the first access to the app and retrieves data from
the local cache for further usage. Complete SW can be generated with Work-
box Command Line Interface (Workbox CLI) [58]. Listing 3.7 demonstrates
how to install this tool, run it to create workbox-config. js configuration
file and generate SW. Workbox configuration file, presented in Listing 3.8,
describes the caching rules. Finally, I register generated SW in the main

HTML page (see Listing 3.9).
Listing 3.5: Create Manifest file for PWA

1)<
2 "name": "Web Camera",
3 "short_name": "WebCam",
4 "display": "minimal-ui",
5 "start_url": "samples/",
6 "theme_color": "#673ab6",
7 "background_color": "#111111",
8 "icomns": [
9 {
10 "src": "data/photo_camera_192.png",
11 "sizes": "192x192",
12 "type": "image/png"
13 }
14]
15 || }
Listing 3.6: Add Manifest file in the main HTML page
1 || <link rel="manifest" href="../manifest.json" />

Listing 3.7: Workbox CLI commands to generate SW

1 ||npm install workbox-cli --global
2 || workbox wizard

workbox generateSW workbox-config.js

Listing 3.8: Workbox configuration file

module.exports = {

globDirectory: ’.°,

globPatterns: [

>*x/*.{html,js,css,xml ,woff2,webp,pngl’

1,

swDest: ’sw.js’,

maximumFileSizeToCacheInBytes: 100 * 1024 x 1024,
};

00 N O UL W N

While the features like installability and offline access are available for
both mobile and desktop devices, the third PWA feature in my app applies

CHAPTER 3. ENVIRONMENT

only to mobile devices and makes the app content responsive to any screen
size. WebCamera adapts to the phone size keeping full-screen camera view
and corresponding width of the control bar. To achieve this behavior, I need
to add the meta tag inside the head tag in all HTML pages (see Listing 3.10).
The meta tag lets take control over the viewport, i.e., the user's visible area

of a web page.

© 00 N O Uk W N

e e e
B W N = O

1"<meta name="viewport" content="width=device-width, user-scalable=no"/>

Listing 3.9: Register SW in HTML file

<script>
if (’serviceWorker’ in navigator) {
window.addEventListener (’load’, () => {
navigator.serviceWorker.register(’../sw.js’)

.then(function (registration) {
console.log(’Registration successful’);
console.log(’Scope is:’, registration.scope);

b

.catch(function (error) {
console.log(’SW registration failed, error:’, error);

I

b
}

</script>

Listing 3.10: Meta tag for responsive app screen size

Chapter 4

Implementation

This chapter describes the implementation of the WebCamera app. The
first section introduces application UI (User Interface), a high-level flowchart
depicting a general use case and media capture initialization. Subsequent
sections discuss the workflow of seven use cases in detail describing algorithms
for the processing of one input frame. The use cases I am showcasing here are
- Instagram Filters, Face Detection, Funny Hats, Card Scanning, Document
Enhancement, Emotion Detection and Invisibility Cloak.

4.1 WebCamera implementation

WebCamera is a browser application containing only client-side code de-
veloped using HyperText Markup Language (HTML), JavaScript (JS) and
Cascading Style Sheets (CSS). CV and image processing algorithms are com-
puted on a CPU of a client with the help of OpenCV.js, and data, such
as a captured face or credit card, does not leave a device. The app is de-
ployed to GitHub Pages automatically from the master branch of WebCamera
project [26], thus, a live demo is available through the link:
https://riju.github.io/WebCamera/samples/.

4.1.1 User interface

Since the main purpose of this application is to demonstrate the capabilities
of OpenCV.js algorithms, the interface was not given much attention and
it was made relatively simple. It uses pure Cascading Style Sheets (CSS)
instead of web design frameworks to avoid additional dependencies. The
main page of the app provides a list of links to HTML pages with OpenCV
use cases (see Figure 4.1a). The interface of each use case affords camera

29

CHAPTER 4. IMPLEMENTATION 30

view and controls, which are described below.

) Web Camera demos H

Web @ Camera

« Instagram filters

« Face detector

« Funny hats

« Credit card Scanner
« Document Scanner
« Emotion Recognizer

« Harry Potter Invisibility Cloak

(a) Main page of WebCamera app (b) Filter controls

Figure 4.1: User interface

The use case design is implemented according to the prototype of the
native mobile camera applications, so it has such basic elements as a camera
view and a camera control bar at the bottom (see Figure 4.1b). The HTML
canvas element is used for drawing real-time camera view. On mobile devices,
the camera canvas is stretched to the width of the device’s screen while on
desktops the canvas occupies fixed size: either 640 x 480 or 320 x 240 pixels.
The control bar has a gallery preview, take-photo button and button for
switching camera view between the face and environment mode. The buttons
designed using Web Open Font Format (WOFF) of Google Material Icons.
Work on the gallery is still in progress. At the moment, I display a thumbnail
of the last photo in the place of the gallery preview, but I do not save the
image to the device. This drawback is due to the lack of implementation in
OpenCV js allowing us to write an image to the device file system.

Some use cases have additional interface elements directly on top of the
camera view. For example, Instagram Filters and Funny hats have a scrolling
bar where user can select a filter or hat, respectively (Figure 4.1b and Fig-
ure 5.2). In addition, in the Instagram Filters demo, some filters provide
sophisticated controls in the form of sliders, checkboxes or select tags. Any
elements located on top of the image can be hidden simply by clicking on
the free space of the camera canvas. In the same way, user can return these
items back. Event listeners are assigned to each element of the interface so
that they respond to user requests at any time.

Moreover, there are extra developer options, which are located under

CHAPTER 4. IMPLEMENTATION 31

the control bar and can be removed later so as not to clutter up the user
interface. These options allow a developer to control the number of threads
and enable performance statistics as well as configure other settings that will
be described individually for some use cases in the next sections.

4.1.2 Use case workflow

Each use case of WebCamera application has a similar workflow from a high-
level point of view. There are three main parts namely initialization, media
capture loop and image processing algorithm. Figure 4.2 depicts a high-level
flowchart including a sequence of basic steps needed to run a use case.

2
Load OpenCV.js
v

Load classifier

Initialize Ul

| |

| |

| Load images |
v

| |

|

v
Initialize OpenCV objects |

Initialization

v
| Start camera |

v¢
. Yes
Streamin —>| Capture frame |
v
No | Process image |

| Draw processed image |—

Image processing algorithm

Media capture loop

A 4
| Stop camera |

Figure 4.2: High-level flowchart of a use case

Initialization starts immediately after user opens a link from the main
menu (Figure 4.1a). The first step of the initialization block is asynchronous
loading of OpenCV.js script. Next two steps are necessary only for a few
use cases. For example, I load Haar Cascade classifier to detect faces in

CHAPTER 4. IMPLEMENTATION 32

Face Detection, Funny Hats and Emotion Recognition demos. In addition to
that, I need Haar Cascade model for the eyes detection in Face Detection and
Funny Hats. Emotion recognition demo also requires Fisher Face classifier
to recognize emotion from the detected face. The third step appears only
in Funny Hats use case. It is needed to load images of hats and glasses
before starting face processing. The fourth step is related to Ul initialization
and may vary from demo to demo depending on what interface elements are
required. In the fifth step, I initialize OpenCV objects such as source and
destination matrices for images, Haar Cascade classifiers and vector of faces.

Before the media processing loop, I set streaming variable to true and
start the camera. Media capture initialization is described in the next sub-
section in more detail. While streaming, I capture input frames, process
them and draw results. These three steps form an image processing algo-
rithm which is different for each WebCamera demo. One iteration of the
media processing loop processes one frame. I also calculate statistic numbers
to track performance during the iteration of processing. By default, statis-
tics are hidden and available in developer settings. If streaming variable is
false, media processing loop is interrupted and camera stops.

4.1.3 Media capture initialization

To start the camera on a media device, I need to find available media cap-
ture hardware. For that purpose, there is mediaDevices interface from Web
APIs providing access to hardware sources of media data like cameras and
microphones. 1 will consider two important methods from this interface:
enumerateDevices() and getUserMedia().

enumerateDevices () method requests available media input and output
devices. From the list of detected devices, I choose ’videoinput’ type of
source and check if there are back and front cameras. Usually mobile phones
have both cameras and label them as ’facing back’ and ’facing front’,
respectively. In out app, these cameras are needed to switch between ”envi-
ronment” and ”user” facing mode. Listing 4.1 provides the code for obtaining
back and front video input. If only one video source was found, I disable the
facing mode button in the camera control bar.

getUserMedia() takes a video constraint defined by a user and checks
permission to use requested media source. Then, it returns a Promise that
provides a video stream. When stream is ready, event listener runs callback
function. If matching media is not available or device denies permission, then
the Promise throws NotFoundError or NotAllowedError, respectively (see
Listing 4.2).

CHAPTER 4. IMPLEMENTATION

© 00 O ULk W N

e T el el
DU R W NN = O

© 00 O ULk W=

_ = e
N = O

Listing 4.1: Find back and front camera sources

navigator .mediaDevices.enumerateDevices ()
.then(function (devices) {
devices.forEach(device => {
if (device.kind == ’videoinput’) {

if (device.facingMode == "environment"
|| device.label.index0f ("facing back") >= 0)
controls.backCamera = device;

else if (device.facingMode == "user"
|| device.label.index0f ("facing front") >= 0)
controls.frontCamera = device;
}
I

P

Listing 4.2: Get user media using mediaDevices interface

navigator.mediaDevices.
getUserMedia({ video: videoConstraint, audio: false })
.then(function (stream) {

video.srcObject = stream;

video.play();

self.onCameraStartedCallback = callback;
video.addEventListener (’canplay’, onVideoCanPlay, false);

b
.catch(function (err) {
self .printError(

’Camera Error: ’ + err.name + ’ ’ + err.message);

)M

4.2 Instagram Filters

33

The demo outlined here emulates Instagram Filters but in a browser using
OpenCV image processing algorithms. Changing colorspace, image thresh-
olding, smoothing images, morphological transformations, image gradients,
Canny edge detection and histograms are some of the filters that I have
demonstrated in my web app. The underlying theory of these algorithms is
presented in Section 3.1.
Flowchart of this use case is quite simple, it is shown in Figure 4.3. 1
apply the selected filter on the input frame and display the filtered image in
the canvas. In addition, the demo has a small preview for each filter with a
real-time image in the scrolling bar. To implement these previews, I resize

CHAPTER 4. IMPLEMENTATION 34

the original image using cv.resize(...) function, apply filters one by one
and show them in small canvases of the scrolling bar.

| Capture new frame |

| Apply selected filter on captured image |
v
| Display filtered image |

| Resize original image for small preview |

| Apply each filter on resized image |
v

| Display previews in the scrolling bar |

End

Figure 4.3: Flowchart of Instagram Filters

Mandatory arguments of a filter function are the source and destina-
tion matrices for input and output images. Usually filters also require extra
parameters such as color conversion code, threshold value or kernel size. Ex-
ample of calling Gray, Threshold and Median Blur filters is presented in
Listing 4.3. dstCl and dstC4 arguments correspond to destination matrix
with 1 color channel and 4 color channels, respectively, i.e., to display gray
pixel, I need only one value, however, if I want to show image in RGBA rep-
resentation with transparency channel, then I store 4 values per each pixel.

Listing 4.3: Apply OpenCV filters

1||cv.cvtColor(src, dstCl, cv.COLOR_RGBA2GRAY);
2 || cv.threshold(src, dstC4, thresholdValue, 200, cv.THRESH_BINARY);

3 || cv.medianBlur (src, dstC4, kernelSize);

4.3 Face Detection

Face Detection use case demonstrates faces and eyes detection using Haar
Cascade classifiers provided by OpenCV. See the idea of Haar algorithm
in Section 3.1.2. The processing pipeline of the demo, presented in Fig-
ure 4.4, depicts the main steps of one frame processing. First of all, I con-
vert input image to grayscale using cv.cvtColor(...) function because
it is required in Haar Cascade approach. Then, I downsample image with

CHAPTER 4. IMPLEMENTATION 35

cv.pyrDown(...) function applying by default the following formula to the
destination image size:

src.cols +1 srcrows + 1
2dLevel ’ 2dLevel) ’

Size((4.1)

where dLevel is downsampling level (=1, by default), src is source image with
cols as a width and rows as a height. I have added configurable developer
setting in the Face Detection demo called ”Downscale level” with values in
the 0-4 range. As it was mentioned in Subsection 4.1.1, on desktop devices,
video canvas occupies either 640 x 480 or 320 x 240 pixels. So if I consider
an input image of 640 x 480 pixels and downsample it by the level equal to
1, then the result of this step is the image of 320 x 240 size, i.e., quarter of

the original image.

| Capture new frame |
v

| Convert image to gray color space |

| Downscale image on chosen level |

| Detect faces in the image and create an array |

End of array

of faces Crop image with a face from array

Detect eyes on the face

Draw rectangles for eyes and
faces on top of output image

Figure 4.4: Flowchart of Face Detection

The most important part in Face Detection demo is detectMultiScale(...)

function of cv.CascadeClassifier () object. Cascade classifier detects faces
in the input image and returns a vector of faces, or in other words, coordi-
nates of face rectangles. Iterating over the vector of faces, I crop a face with
given coordinates using src.roi(face) function, where src is source image
and face is face rectangle (four points). Then, I detect eyes in the same
way as | have done it with faces. When the face vector is processed, I have
coordinates for all faces and eyes. Finally, I draw rectangles for calculated
coordinates and show the output image.

CHAPTER 4. IMPLEMENTATION

4.4 Funny Hats

Funny Hats requires face and eyes detection so it is based on the previous
demo. As the name of the use case implies, Funny hats draws hats over
detected faces. Moreover, since the demo has eyes detection, it draws glasses

in addition to hats.

Capture new frame

v

Convert image to gray color space

Downscale image on chosen level

v

| Detect faces in the image and create an array |

End of array
of faces

Display final image
with hats and glasses

Crop image with a face from array

|

| Calculate hat coordinates according to face size |

Resize hat image

2

Detect eyes on the face

v

Calculate angle of rotation for glasses

Calculate glasses coordinates

v

Resize glasses image

Copy hat to the output image
v

_|

Copy glasses to the output image

Looking at the flow diagram of the process in Figure 4.5, we can see that
sequence of steps is similar to Face Detection demo until I crop detected face
from the main image. After that, I start processing template images of a hat
and glasses. First, I calculate the hat size according to the face size and find
absolute coordinates to overlay the hat later on the output image. Then I

Figure 4.5: Flowchart of Funny Hats

resize the image of the hat.

CHAPTER 4. IMPLEMENTATION 37

For the glasses, I have a slightly extended approach. First, I use Haar Cas-
cades detects to detect the eyes. Second, I check if there are two eyes because
sometimes the classifier can make a wrong prediction. Third, I find right and
left eye to calculate angle of rotation using cv.getRotationMatrix2D(...)
and cv.warpAffine(...) functions. Finally, I overlay resized images of hat
and glasses on the output image using src.copyTo(...).

To draw hats and glasses with transparent background, I need to cre-
ate a background mask. In RGBA color representation, the Alpha channel
is responsible for image transparency. Thus, I need to split hat image on
channels and save the last channel separately to apply it when copy hat and
glasses to the output image. Listing 4.4 shows how to read hat image, split
it on channels and get the required channel by index.

Listing 4.4: Create transparent hat mask from Alpha channel

let rgbaVector = new cv.MatVector();
hatSrc = cv.imread(hatImage);
cv.split(hatSrc, rgbaVector);
object.mask = rgbaVector.get (3);

T W N

rgbaVector.delete () ;

4.5 Card Scanning

The WebCamera can also be used for another sort of tasks like credit card
and document scanning. In this section, I will describe the implementation of
the Card Scanning use case based on Optical Character Recognition (OCR).
This demo involves using a template matching algorithm for the OCR-A font,
which is commonly used on the front of credit cards. The demo applies to a
credit card with a sixteen-digit number divided into four groups as shown in
Figure 4.8a. The basic steps of the use case are the following:

¢ Find the card contour in the image
e Localize 4 groups of digits
e Detect digit contours in each group

e Apply template matching to recognize the digits

A more detailed flow diagram of my approach is presented in Figure 4.6.
This diagram describes the processing of one input frame. Before I start
processing, I load reference OCR-A digits. The digits are shown in Figure 4.7.

CHAPTER 4. IMPLEMENTATION 38

44 Capture new frame |
2

| Convert image to gray color space |

| Apply Canny filter |
v

| Find contours |

End of array
of contours

Approximate contour's curve

Contour has 4
points

Yes

AT

y
—| Display captured frame

No lose to expecte:

contour

| Crop card image from captured frame |

| Apply set of filters on card image |

| Find contours of digit groups in filtered card |

3
>

Yes

Find contours of digits
in the digit group

End of array o
digit groups

Recognize digit by template matching | | Show car+d number |
Show card and highlight detected digits |

Figure 4.6: Flowchart of Card Scanning

0234567489

Figure 4.7: Reference OCR-A digits in Card Scanning demo

Append result to card number | |

Later I will use them in template matching. Let me now explain each step
of the flowchart.

First, to detect edges of the card, I need to convert image to grayscale,
apply the Canny edge filter and find all contours in the edged image. See
Section 3.1 to read descriptions of image processing algorithms in OpenCV

CHAPTER 4. IMPLEMENTATION 39

applied in this demo. Next, I run a loop iterating over detected contours and
approximate number of points. If the approximated curve has four points,
I sort these points clockwise and check if they are close to the expected
contour. The expected contour is a green rectangle on the screen and user
should adjust the card edges as close as possible to the rectangle border.
If none of the curves fits the specified area, the loop is completed and the
algorithm requests the next input image. If the required contour was found,
the part of card edge detection is done.

my @ my<;

4000 1234 5678 9010

w0

4000 1234 5678 9010
s 09/17 ~
VALUED CARDMEMBER

ww 09717
VALUED CARDMEMBER

(a) Original card image (b) Gray color space (c) Top-hat morphology
>

my <

400012348 56780 5010

w0

ww 09/17
VALUED CARDMEMBER

(d) Sobel gradient (e) Closing operator (f) Number recognized

Figure 4.8: Step by step card filtering

The next part of the Card Scanning approach is detection of 4 digit groups
in the card. First, I crop the card from the image and resize it to 300 pixels
wide. Next, I apply a set of filters to the card in the following sequence: con-
version to gray color space, " Top-hat” morphological transformation, Sobel
gradient along the x-direction, ”Close” morphological transformation, thresh-
old operation as well as one more ”Close” morphological operation. Results
of filtering are presented in Figure 4.8. The Top-hat transformation finds
light areas against a dark background, Sobel filter shows vertical changes in
the gradient, thresholding is used to binarize the image, and ”Close” mor-
phological transformation closes small gaps between light regions. Then, in
the filtered image, I find contours of 4 digit groups.

The last part of card scanning approach is focusing on the array of digit
groups. In each group, I detect contours of four digits and loop over them.
Next, [apply correlation-based template matching to the digit and choose the
result with the highest score. In this step, I used cv.matchTemplate(...)
function which compares the digit with the templates and calculates the sim-
ilarity score corresponding to each reference digit. Then, I append recognized

CHAPTER 4. IMPLEMENTATION 40

digit to the card number array and determine the type of card by the first
digit of the number where three is American Express, four is Visa, five is
MasterCard and six is Discover Card. Finally, I display the card number and
its type as well as card image with highlighted digit groups.

4.6 Document Enhancement

This section introduces another scanning approach called Document En-
hancement. This use case applies a 2D perspective transform and threshold
filter to the document image thus producing an enhanced document. I will
discuss the processing pipeline of the demo presented in Figure 4.9.

->| Capture new frame |

Photo button
clicked

Filter image to find all edges |
2

Find contours in filtered image |
v
| Approximate contours |

Image has at least one
contour with 4 points

Choose contour with max

area Display captured
v image and draw full-
Display captured image screen contour

and draw found contour

v

Adjust contour area by dragging points

v |

% Display captured image |

No User accepted

contour

v Yes

| Apply 4-point perspective transformation |

| Convert document to gray color space |

| Apply adaptive threshold on document |
v
| Resize document for full-screen view |

v

| Display enhanced document |

End

Figure 4.9: Flowchart of Document Enhancement

CHAPTER 4. IMPLEMENTATION 41

The camera view just shows the video stream until the user clicks on the
button to take a photo. When the button was clicked, I apply the same
approach as in Section 4.5 to detect edges of the document: filter image,
find contours and approximate them. If the image has at least one contour
with four points, I choose a contour with the maximum area and draw this
contour as a green rectangle surrounding the detected document. Otherwise,
I display full-screen green rectangle. If user is not satisfied with the selected
area, he can adjust the area by dragging the points. This step is optional.

When user accepted the contour by clicking the button, I move to the
main processing part. First, I apply four-point perspective transformation
using cv.getPerspectiveTransform and cv.warpPerspective functions.
It allows obtaining a top-down view of the document. Second, I convert
the document to gray color space and apply the adaptive threshold. After
this step, I have the scanned document with a black-and-white paper effect.
Finally, I resize the document to full-screen size and display it.

4.7 Emotion Recognition

OpenCV has a few face recognition classes that can perform emotion pre-
diction task. The one of these classes is FisherFaceRecognizer, which is
described in more details in Section 3.1.3. To perform emotion recognition,
first of all, I have built OpenCV with Contrib module (see Section 3.1.1).
Then, I found a Fisher Face model that was trained on the following set
of emotions: ['neutral’, anger’, ’disgust’, 'fear’, "happiness’, ’sadness’, 'sur-
prise’] [30, 35]. In the end, I draw an emoticon image instead of the face
with a corresponding emotion. Let’s discuss the flow chart of my Emotion
Recognition use case (see Figure 4.10).

First, I convert an input frame to gray color space and detect faces in this
image using Haar Cascade model and detectMultiScale(...) function (see
Section 3.1.2). The result of this step is an array of detected faces. Then,
I start looping over these faces. In the loop, I crop current face from the
input image and resize it to 350 x 350 pixels as the Fisher Face recognizer is
trained on images of this size. Then, I run the recognizer to make predictions
and choose emotion with the highest score. The next step is to resize the
corresponding emoticon image according to the face size and copy it to the
input frame. In addition, I copy a small original frame to the left top corner
of the camera view. Finally, I draw the output frame where user sees the
emoticon image instead of his face and small original frame.

CHAPTER 4. IMPLEMENTATION 42

| Capture new frame |
v

| Convert image to gray color space |

| Detect faces in the image and create an array |

|92
<

End of array

of faces Crop image with a face from array |

| Resize face for recognition model |

Predict emotion |
| Display final image | v

Resize emoticon image

according to face size
v

| Replace face with emoticon image I—

Figure 4.10: Flowchart of Emotion Recognition

4.8 Invisibility Cloak

In this section, I discuss how to create such a magical effect as Harry Potter
Invisibility Cloak using simple CV techniques in OpenCV. In technical terms,
this magical experience is called color detection and segmentation. The basic
idea is to show the background frame instead of things with the specified
color. By default, I remove blue color, but this parameter is configurable.

The algorithm starts with capturing the background frame and storing it
for future use. To do this, I run a short loop to wait until the camera settings
stabilize otherwise background image can have dark shade compared to the
next input frames. Then, I start the main loop and process each input frame
according to steps in Figure 4.11. The first step is to convert the image
from RGB to HSV color space because in HSV representation it is easier to
control color shades. HSV is described in Section 3.1.4. Hue component of
HSV format defines the color (see Figure 3.2). So in OpenCV, if the object
is blue, Hue value will be in the range of 0-30. Saturation and brightness
(intensity) can be adjusted by Saturation and Value components of HSV
format.

The second step is to apply cv.inRange(...) filter where I specify lower
and upper boundaries of the color that I want to extract from the image.
Since I need to detect the blue color and its shades, I define the Hue range as
0-30, Saturation as 100-255 and Value (intensity) as 7-255 by default. How-

CHAPTER 4. IMPLEMENTATION 43

ever, user is able to set own HSV parameters in the demo (see Figure 4.12).

Capture new frame
7
Convert image to HSV color space

Apply inRange filter
7

Create an inverted mask of the filtered image
7
Apply the mask to the source image

Combine processed image and background

| |
| |
| |
| Apply Morphology filter with Dilate option |
| X |
| |
| |
| |

Display final image

Figure 4.11: Flowchart of Invisibility Cloak

Lower value of Hue channel: OG
Upper value of Hue channel: 33—0—:

Figure 4.12: Controls for color segmentation

The third step is morphology transformation cv.morphologyEx(...)
with Dilate option cv.MORPH DILATE. This option increases the area of the
object and joins broken parts (see Section 3.1.7 about morphology opera-
tors). Next, I create an inverted mask of the filtered object and apply it to
the source image. It provides the original image, but now the blue color is
segmented out. Finally, I need to add the background in the empty area so
[use cv.addWeighted(...) function to combine source and background to
the destination image.

Chapter 5

Results

This chapter showcases WebCamera use cases in a browser and presents
performance statistics.

5.1 Demos in a browser

Face Detection demo is shown in Figure 5.1. It demonstrates the ability to
detect one or multiple faces in one image. In addition to face detection, eyes
detection is enabled.

(a) One face (b) Multiple faces

Figure 5.1: Face Detection in a browser

Two examples of Funny Hats demo are showcased in Figure 5.2. User can
select templates for hats and glasses from the scrolling bars. There is also a
small button on the left side to switch between hats and glasses bars.

44

CHAPTER 5. RESULTS 45

(a) Choose hat (b) Funny Hats

Figure 5.2: Funny Hats in a browser

: & = - i o=
1 - No filter, 2 - Gray, 3 - HSV, 4 - Threshold, 5 - Adaptive threshold, 6 - Gaussian
blur, 7 - Morphology (erode operation), 8 - Morphology (dilate operation), 9 -
Sobel derivative, 10 - Canny edge, 11 - Histogram calculation, 12 - Histogram
equalization.

Figure 5.3: Instagram Filters in a browser

Figure 5.3 presents a collection of screenshots from Instagram filters use
case. The figure contains some examples of applied filters while the full set
of filters contains 15 options: Gray, HSV, Threshold, Adaptive threshold,
Gaussian Blurring, Median Blurring, Bilateral Blurring, Morphology, Sobel

CHAPTER 5. RESULTS 46

Derivatives, Scharr Derivatives, Laplacian Derivatives, Canny Edge Detec-
tion, Calculation, Equalization and Backprojection. The UI has a scrolling
bar with previews of filters where user can click on a preview to apply the
selected filter on the main image (see Figure 4.1b).

Card Scanning process is shown in Figure 5.4. In the first image, we can
see a white rectangle where user has to put a credit card. When card edges
were detected, the demo starts processing card number. The second image
shows the result of scanning. User gets the card type, card number and
card image with highlighted digit groups. User can copy the card number by
clicking the Copy button on top of the screen.

8:46 @ me

Credit card scanning
riju.github.io

PLATINUM CARD

Card type: Visa

TSl 4000 1234 5678 2010

0123 4567 A920 1112

B 12susV
VISA
HENBER S NAME

PLATINUM CARD

0123 4567 8910 1112
my o]
NEABER S NARE

4000 1234 5678 9010

mycy

40008 1234 56746 S0L0

(a) Detect card edges (b) Card number recognized

Figure 5.4: Card Scanning in a browser

Document Enhancement approach is presented Figure 5.5. The first step
is to click the ”Take photo” button. The second step is to accept or adjust
the detected document. Finally, we see the enhanced document with applied
perspective transformation and threshold filter.

CHAPTER 5. RESULTS 47

637 © G G ™

@ Document scanning
riu github.fo

637 @G G ™ 637 @G G ™

& Document scanning
i github.jo

& Document scanning
i github o

Rijubrata Bhaumik
LUinux Software Enginesr
Cpen Sowsce Technology Coniar

rjubrata bhaumk@intelcom

+35846 521 0168 mobie
wwvintelcom

02160 Espoo, Finland
+3569605270 fax

Intel Finland Oy

~ Westendinkatu 7

!

(a) Start scanning (b) Edges detected (c) Processing done

Figure 5.5: Document Enhancement in a browser

Figure 5.6 demonstrates two examples of Emotion Recognition - Happi-
ness and Anger. Other available emotions are Neutral, Disgust, Fear, Sadness

and Surprise.

(a) Happiness (b) Anger

Figure 5.6: Emotion Recognition in a browser

Finally, Harry Potter Invisibility Cloak is shown in Figure 5.7. In this
demo, I segment out the blue color by default, however, user can choose any

color he needs.

CHAPTER 5. RESULTS 48

(a) Without Invisibility Cloak (b) Invisibility Cloak in action

Figure 5.7: Invisibility Cloak in a browser

5.2 Performance statistics

I tested WebCamera app in the Chrome browser on Windows laptop and
Android phone. Mobile phone model is Motorolla G8 with Octa-core CPU
that has eight logical cores: 4 x 2.0 GHz Kryo 260 Gold and 4 x 1.8 GHz
Kryo 260 Silver. The laptop has the following CPU characteristics:

CPU characteristics

Model Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz
Base speed 2,21 GHz

Sockets 1

Cores 6

Logical processors 12

Virtualization enabled

L1 cache 384 KB

L2 caches 1,5 MB

L3 cache 9,0 MB

I performed two experiments for measuring performance. The first ex-
periment is to compare OpenCV.js built with various optimization options
on both the laptop and mobile phone. To do this, I have built a Wasm file
of OpenCV in four different ways: not optimized, with SIMD optimization,
with Threads optimization and with Threads+SIMD optimizations. In this
experiment, I set a maximum number of threads when Threads optimized
Wasm was used. The browser limits performance to 60 FPS as a maximum.

CHAPTER 5. RESULTS 49

Table 5.1 shows laptop's FPS (Frames Per Seconds) numbers for Face De-
tection, Funny Hats and some filters from Instagram Filters use case.

Wasm type Not optimized | SIMD ;f:hg?ds JTrhsr%?FS (=12)
Face detection 13 13 37 37
Funny hats demo 14 14 49 49
Gray filter 60 60 60 60
HSV filter 60 60 60 60
Threshold filter 60 60 60 60
Adaptive threshold 25 54 28 56
Gaussian blur 5 22 16 44
Median blur 12 22 13 22
Bilateral blur 14 15 36 42
Morphological trans-

forml;tiong 29 60 60 60
Sobel derivative 49 60 60 60
Scharr derivative 56 60 60 60
Laplacian derivative | 39 54 47 56
Canny edge ‘ 49 ‘ 49 60 60

Table 5.1: Performance of OpenCV.js with different optimization options on
the laptop, FPS

Table 5.2 presents the same FPS numbers measured on the mobile phone.
There is no SIMD measurements in this table as there was a problem with
OpenCV js initialization on the mobile phone. The error in Chrome browser
indicates "expected type 132, found s128.10ad128” meaning that SIMD
is not supported yet in Chrome for Android. However, it will be available
soon as it is promised on Chrome status page [29]. While in Face Detection
and Funny Hats measurements for the laptop I used first Downscale level,
for the mobile phone I applied second Downscale level as it still detects eyes
and faces but shows higher performance. See Section 4.3 and Section 6.1 to
find more about Downscale level control. Other configurations for filters like
threshold values and kernel sizes are kept the same on both the laptop and
mobile phone.

In the second approach, I focus on Threads version of OpenCV .js and test
performance of Face Detection, Funny Hats and Emotion Recognition demos
running with a different number of threads on the laptop (see Figure 5.8).

CHAPTER 5. RESULTS

20

Wasm type Not optimized | Threads (=8) ‘
Face detection 6 11
Funny hats demo 4 6
Gray filter 11 15
HSYV filter 9 14
Threshold filter 10 15
Adaptive threshold 2 2
Gaussian blur 0 2
Median blur 1 5
Bilateral blur 1 5
Morphological transformation | 4)
Sobel derivative 6 9
Scharr derivative 9 11
Laplacian derivative 4 7
Canny edge 6 11

Table 5.2: Performance of OpenCV .js with different optimization options on

the mobile phone, FPS

—— Face detection
601 |~ Funny hats
Emotion recognition

Performance [FPS]

l\ |
012 4

6

8 10 12

Number of threads

Figure 5.8: Performance of OpenCV.js on the laptop running with different

number of threads

Chapter 6

Discussion

As this thesis aims to evaluate the user-perceived quality of the developed
application, the first section is dedicated to the analysis of the performance
statistics. There, I compare FPS numbers and discuss the effectiveness of op-
timization options such as SIMD and threads flags for Emscripten compiler.
The second section reveals supporting research question about the diver-
sity of OpenCV algorithms to implement various CV and image processing
tasks. The third section considers the PWA experience and its native-like
features. The fourth section discusses some limitations occured in the app
usage. The last section suggests future work and possible improvements for
the WebCamera including a short report about an attempt to port Intel’s
Model Optimizer and Inference Engine to the Web platform.

6.1 Analysis of performance statistics

Table 5.1 and Table 5.2 present performance statistics for the laptop and
mobile phone, respectively, based on applied optimizations in OpenCV js.
I tested four versions of OpenCV.js, such as not optimized, SIMD, threads
and threads+SIMD, for some use cases of WebCamera application. It is
obvious that not optimized OpenCV.js should be slower than other versions
and threads+SIMD configuration should show the highest numbers. Indeed,
performance results confirm this. For example, for Gaussian filter on the
laptop, the threads+SIMD version is almost 9x faster than not optimized
OpenCV.js. On average, it shows 3x greater performance for all use cases
presented in the first table. Some filters may have even higher FPS values,
but Chrome browser limits performance to 60 FPS.

Despite the fact that threads+SIMD configuration provides an excellent
increase in speed, and in most cases, FPS numbers for desktop and laptop

o1

CHAPTER 6. DISCUSSION 52

users can be as high as possible or near the maximum value, mobile per-
formance is still not acceptable to perform face detection or apply filters in
real-time video. From my experience, an FPS value less than 15 is unpleas-
ant for visual perception. In my demos, even with threads optimized version,
I get FPS numbers equal to or less than 15. Other mobile processors may
compute a little faster, but it is still unsatisfactory quality to be the perfect
replacement for native mobile applications.

Moving from general analysis to a more detailed one, I will discuss also
SIMD and threads flags applied separately and compare them with the not
optimized version. In the first table, SIMD optimization does not affect some
use cases. For instance, FPS numbers remain the same in Face detection,
Funny hats and Canny edge filter. It means that these algorithms do not
utilize v128 intrinsics and Emscripten compiler has not found any place for
optimization when porting OpenCV to Wasm. However, this can be fixed
by OpenCV developers later. Since SIMD optimizations for Wasm were
integrated into OpenCV in 2019, this functionality is still in progress. To
get back to laptop performance statistics, SIMD provides around 2x speedup
for the Adaptive threshold, Median blur and Morphological transformation.
Gaussian blur works even 4.5x faster. Edge detection filters like Sobel and
Sharr derivatives are improved up to the maximum FPS value.

In contrast to SIMD, threads optimization affects all use cases. In the
first table, it demonstrates 3x speedup for Face detection, 3.5x — for Funny
hats, 3x — for Gaussian filter and 2.5x — for Bilateral filter. Similar to SIMD,
threads increase performance up to the maximum FPS value for Sobel and
Sharr derivatives. In addition, performance of the Canny edge is also im-
proved up to 60 FPS. In other cases of the first table, a slight increase in
speed is observed. Specifically, Laplacian derivative has been improved from
39 to 54 FPS, Adaptive threshold — from 25 to 28 FPS and Median blur
— from 12 to 13 FPS. At the same time, experiments on the mobile phone
presented in the second table show the average increase in performance by
1.5-2 times except the Adaptive threshold where no improvement is observed.
From both tables, it is noticeable that blur filters, in particular, Gaussian,
Median and Bilateral smoothing, are the most compute-intensive as their
performance is worse than in other filters.

Figure 5.8 depicts another kind of statistics showing the dependence of
performance on the number of running threads in Emotion recognition, Face
detection and Funny hats demos. Single-threaded Emotion recognition takes
5 FPS, Face detection — 13 FPS and Funny hats — 14 FPS. The maximum
achieved performance in this demos running with twelve threads is 19, 37
and 49 FPS, respectively. I would say that six threads is optimal as it allows
to reach almost maximum possible FPS value. Emotion recognition demo

CHAPTER 6. DISCUSSION 93

is twice as slow as the other two demos because it uses two models: Haar
Cascades to detect face and Fisher faces to recognize an emotion that is quite
a compute-intensive task.

One thing I want to notice in the Table 5.1 and Figure 5.8 is that Funny
hats demo is faster than the Face detection. While the maximum rate for
Face detection is 37 FPS, Funny hats processes even 49 FPS. The obvious
question is how is it possible if Funny hats use case includes face detection
and additionally hat processing, while in the Face detection I just draw a
face rectangle over the input image. The point is that I redraw hat image
only when it changes its position by more than 3 pixels. Otherwise, the hat
image stays unchanged. It was done to remove the hat jitter effect. The
reason of jitter comes from Haar Cascade model. This model gives a face
with a new size every frame, and when I resize a hat according to the new
face it looks like the hat is shaking. It turned out that in addition to jitter
fix, it also improves performance. The parameter to control the room for
jitter is configurable. Thus, I can set it more or less than 3 pixels, however,
in my opinion, 3 pixels is optimal. With the jitter limit of one pixel, Funny
hats takes the same performance as Face detection.

Some demos like Card scanning, Document enhancement and Invisibility
cloak are not presented in the performance statistics. These use cases do not
perform heavy workload, and thus run at maximum FPS on the laptop. For
example, the Document enhancement shows just input image in real-time
until user clicks "Take photo” button. Card scanning demo basically com-
putes Canny edge filter until card edges are detected. Finally, the Invisibility
cloak combines simple color space conversion and Morphology transforma-
tion. However, on the mobile phone, these demos still run in the FPS range
presented in the Table 5.2, i.e., near 20 FPS in the Document enhancement
and around 10 FPS in the Card scanning and Invisibility cloak.

It is worth to mention that discussed performance numbers are relative.
Even, if the demos are processed on the same CPU, performance results can
vary slightly depending on the amount of light in the room, the number of
objects and faces in front of the screen, how far the face from the screen, etc.
However, measured performance statistics still show an approximate picture
of the processing in my application.

6.2 WebCamera limitations

When it comes to the topic of limitations, I would like to mention some
drawbacks related to browser support. Since I developed the WebCamera
primarily for Chrome browser on Linux OS, Chrome OS, Windows and An-

CHAPTER 6. DISCUSSION 54

droid, I did not monitor problems that may occur in other browsers or on
Mac OS and iOS. When the project was done for Chrome, I also launched
WebCamera app in Edge and Firefox browsers on Windows. I figured out
that the latest version of Firefox, specifically 76.0.1 (64-bit), does not sup-
port Atomics object [27], which is required for well-defined execution order
in OpenCV.js with threads optimization. However, not optimized OpenCV
works well in Firefox. Edge browser supports Atomics since version 79 so it
accepts both not optimized and multithreaded OpenCV. Feedback from Mac
OS and iOS users shows that WebCamera is not available for these platforms,
and this issue requires further investigation.

Other limitations are related to implementation of use cases. I will start
with Card scanning demo. First, it can detect only OCR-A font. To recog-
nize other fonts, I need to create new digit templates to perform template
matching. Second, the card number must be presented in the form of four
groups of 4 digits giving 20 digits in total. For a different form of card num-
ber, another algorithm must be implemented. Third, sometimes it is not
possible to recognize digits when the card contains an image. It is better to
have uniform color instead of image on the card. Moreover, the digits should
be clearly visible without merging with the card background. Last but not
least, the background, on which the credit card is captured, should also be
uniform and solid. Otherwise, the edges of the card may not be detected and
the number recognition process will not start. In addition, user should not
hold the card in hand as fingers will overlap the card contour and interfere
with edge detection. Similar to Card scanning limitations, Document en-
hancement demo requires uniform and solid image background to correctly
detect document edges. However, if no edges were detected, user can still
process the current image and adjust the edges manually.

6.3 Future work

To make the app even more native and progressive, I would also add support
for landscape mode in addition to portrait orientation. Furthermore, it can
be useful to provide cache expiration period to be able to update the app
sources without refreshing cache manually.

As it was described in Section 2.1, OpenCV supports DNN models gener-
ated by Intel's Model Optimizer. These models then are loaded by Intel's In-
ference Engine to perform efficient DNN inferensing. Both Model Optimizer
and Inference Engine form OpenVINO Toolkit, which is a Deep Learning
Deployment Toolkit [39]. This project is currently available only for C/C++
usage, and an interesting idea is to port this Engine to the Web platform to

CHAPTER 6. DISCUSSION 95

run optimized models in a browser. Though, there are some difficulties that
I have encountered while trying to compile this project by Emscripten. The
major problem is that this project actively utilizes machine-dependent code,
specifically, JIT (Just-In-Time) assembler for 64-bit architecture. However,
”Emscripten cannot compile inline assembly code because it is CPU specific,
and Emscripten is not a CPU emulator” [34]. So this work requires further
research to make OpenVINO Toolkit platform-independent.

Chapter 7

Conclusion

The focus of the work presented in this thesis is the development of CPU-
based WebCamera application with CV capabilities performed by the Wasm
version of OpenCV library. The research aims to check the possibility to
achieve a negligible loss of user-perceived quality in terms of performance
compared to native applications. Implemented CV use cases, such as In-
stagram filters, Face Detection, Funny Hats, Card Scanning, Document En-
hancement, Emotion Recognition and Invisibility Cloak, were tested in Chrome
browser on a laptop and mobile device to measure performance in FPS. From
the one hand, results show that the app is able to reach maximum possible
FPS value (60 FPS) in the browser almost in all use cases performing on
the laptop except blurring filters and Emotion recognition demo as they are
the most compute-intensive algorithms. From the other hand, the mobile
phone presents not impressive results meaning that the app still requires
improvements to replace native mobile applications in the future. However,
the mobile version can be implemented as a processing of captured images
instead of real-time video processing. In this case, it is an emerging web
alternative for similar existing native solutions.

The thesis also experiments with optimization options, such as SIMD
and threads, applied by Emscripten compiler to build OpenCV.js Wasm file.
These optimizations are used to improve the performance of running demos
in a browser and estimate efficiency compared to not optimized OpenCV ver-
sion. Measured statistics outline that SIMD option can increase the speed
of processing by 2-4.5 times. However, it does not affect all use cases. In
contrast, threads optimization provides performance improvement in all pre-
sented demos. The maximum speedup reaches a 3.5x rate. Applied together,
SIMD and threads allow to execute CV algorithms on the web even 3-9 times
faster.

Furthermore, the study found that OpenCV provides a vast range of algo-

o6

CHAPTER 7. CONCLUSION 57

rithms in areas of CV and ML, and OpenCV.js contains almost all modules
that are implemented in C/C++ language. The diversity of OpenCV.js ca-
pabilities outperform the functionality of existing popular CV libraries for
the web. Thus, it was feasible to implement all WebCamera demos with re-
quired functionality using only OpenCV.js and pre-trained models for face,
eye and emotion detection. However, the application field of OpenCV is quite
exhaustive and in addition to presented image filtering, face detection, emo-
tion recognition and color segmentation includes motion tracking, augmented
reality, mobile robotics, egomotion estimation and many others.

In order to address the demands on native-like experience, the WebCamera
has been converted to PWA with a set of features such as app installation,
offline mode and responsive screen size on mobile phones. It is very handy to
have the app icon on a desktop and launch it in one click instead of opening
a browser and looking for a bookmark or typing the website URL (Uniform
Resource Locator) manually. Moreover, users do not face extra hassle related
to app stores like authorization and approval processes because PWA apps
are distributed just through URL. Speaking about the offline feature, it is a
truly remarkable possibility as it allows to run any WebCamera use case with-
out the internet like any native application. Screen responsiveness adjusts
the camera view for any mobile device so that users can enjoy full-screen
WebCamera format on mobile phones. All these progressive enhancement
principles entail a smooth user experience associated with native apps.

Promising direction for future research can be porting Intel's Model Op-
timizer and Inference Engine from C/C++ to Wasm, similar to OpenCV js.
It would allow us to run optimized DNN models in a browser more efficiently
to present new use cases in WebCamera app like facial landmarks detection,
background removal or human pose estimation.

Overall, this study can help other developers to create their own web
camera applications or camera-based services for the web using OpenCV
functionality. Implemented Instagram filters can combine certain image pro-
cessing algorithms and parameters to emulate image processing from the real
Instagram app. Funny hats and Emotion recognition can be a complement
to web prototype of Snapchat app. Card scanning use case can be integrated
into a payment tool on the web, and the advantage of this service is that
data does not leave a device during processing. Other WebCamera examples
also demonstrate the ability to perform CV tasks in a browser with competi-
tive performance at least on general-purpose processors designed for laptops,
desktops and workstations.

From a contribution perspective, the application has had an impact on
the web communities of such companies as Intel and Google. WebCamera
demos were introduced at Chrome Dev Summit 2019 as examples of opti-

CHAPTER 7. CONCLUSION 58

mized Wasm module running in Google Chrome browser [49]. Moreover, V8
Javascript engine developed by the Chromium project also showcased the
app on the web page called ”Fast, parallel applications with WebAssembly
SIMD” [67].

Bibliography

1]

BELHUMEUR, P. N., HESPANHA, J. P., AND KRIEGMAN, D. J. Eigen-
faces vs. fisherfaces: recognition using class specific linear projection.
IEEFE Transactions on Pattern Analysis and Machine Intelligence 19, 7
(1997), 711-720.

BIORN-HANSEN, A., MAJCHRZAK, T. A., AND GRONLI, T.-M. Pro-
gressive web apps: The possible web-native unifier for mobile devel-
opment. In Proceedings of the 135th International Conference on Web
Information Systems and Technologies (January 2017), pp. 344-351.

CANNY, J. A computational approach to edge detection. IEFE Trans-
actions on Pattern Analysis and Machine Intelligence PAMI-8, 6 (1986),
679-698.

CuLJak, I., ABRAM, D., PriBanNic, T., Dzapro, H., AND CIFREK,
M. A brief introduction to OpenCV. In Proceedings of the 35th Inter-
national Convention MIPRO (Opatija, Croatia, October 2012), IEEE,
pp- 1725-1730.

DanG, K., AND SHARMA, S. Review and comparison of face detection
algorithms. In 2017 7th International Conference on Cloud Computing,
Data Science and Engineering - Confluence (2017), IEEE, pp. 629-633.

Haas, A., ROSSBERG, A., SCHUFF, D. L., TITZER, B. L., HOLMAN,
M., GOHMAN, D., WAGNER, L., ZAKAI, A., AND BASTIEN, J. Bring-
ing the web up to speed with webassembly. In Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (New York, NY, June 2017), Association for Computing
Machinery, pp. 185-200.

Huang, T. S. Computer Vision: Evolution and Promise. CERN School
of computing (September 1996), 21-26.

29

BIBLIOGRAPHY 60

8]

[11]

[13]

[14]

[15]

[16]

JENSEN, P., JiBaja, 1., Hu, N., GoaMAN, D., AND MCCUTCHAN,
J. SIMD in JavaScript via C + + and Emscripten. In Workshop on
Programming Models for SIMD/Vector Processing (2015).

LEUNG, C., AND SALGA, A. Enabling webgl. In Proceedings of the 19th
International Conference on World Wide Web (New York, NY, 2010),
Association for Computing Machinery, pp. 1369-1370.

Ma, Y., X1IANG, D., ZHENG, S., Tian, D., anD Liu, X. Moving
deep learning into web browser: How far can we go? In The World
Wide Web Conference (New York, NY, 2019), Association for Comput-
ing Machinery, pp. 1234-1244.

MOBEEN, M. M., AND FENG, L. High-Performance Volume Rendering
on the Ubiquitous WebGL Platform. In IEEFE 14th International Confer-
ence on High Performance Computing and Communication (Liverpool,
UK, June 2012), IEEE, pp. 381-388. DOI: 10.1109/HPCC.2012.58.

PAPOUTSAKI, A., SANGKLOY, P., LASKEY, J., DASKALOVA, N.,
Huang, J., AND HAYs, J. WebGazer: Scalable Webcam Eye Track-
ing Using User Interactions. In 25th International Joint Conference on
Artificial Intelligence (New York, July 2016).

ROURKE, M. Learn WebAssembly. Packt Publishing Ltd, 2018,
ch. What is WebAssembly?, pp. 11-12.

SARAGIH, J. M., Lucey, S., AND CoOHN, J. F. Deformable Model
Fitting by Regularized Landmark Mean-Shift. In International Jour-
nal of Computer Vision (September 2010), vol. 91, pp. 200-215. DOI:
10.1007/s11263-010-0380-4.

SMITH, S. W. The Scientist and Engineer’s Guide to Digital Signal Pro-
cessing. California Technical Publishing, San Diego, CA, 1999, ch. Mor-
phological Image Processing, pp. 436-438.

STEINER, T. What is in a Web View? An Analysis of Progressive Web
App Features When the Means of Web Access is not a Web Browser.
In Companion of the The Web Conference 2018 (Lyon, France, April
2018), pp. 789-796. DOI: 10.1145/3184558.3188742.

SzeLISKI, R. Computer Vision: Algorithms and Applications. Springer,
Berlin, 2010, ch. What is computer vision?, pp. 3-10.

BIBLIOGRAPHY 61

[18]

[19]

[20]

[26]

[27]

28]

TAHERI, S. Towards Engineering Computer Vision Systems: From the
Web to FPGAs. PhD thesis, Computer Science, University of California,
Irvine, US, 2019. https://escholarship.org/uc/item/78b6q2uv/.

TAHERI, S., VEDIENBAUM, A., Nicorau, A., Hu, N., AND
HAcHIGHAT, M. R. Opencv.js: Computer vision processing for the
open web platform. In Proceedings of the 9th ACM Multimedia Systems
Conference (New York, NY, USA, 2018), Association for Computing
Machinery, pp. 478-483.

ViorLa, P., AND JONES, M. Rapid object detection using a boosted cas-
cade of simple features. In Proceedings of the 2001 IEEE Computer So-
ciety Conference on Computer Vision and Pattern Recognition (Kauai,
HI, USA, 2001), vol. 1, IEEE, pp. 511-518.

WILSON, P., AND FERNANDEZ, D. Facial feature detection using haar
classifiers. Journal of Computing Sciences in Colleges 21 (April 2006),
127-133.

ZAKAI, A. Emscripten: an LLVM-to-JavaScript compiler. In Compan-
ion to the 26th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (Portland, OR,
USA, October 2011), pp. 301-312. DOI: 10.1145/2048147.2048224.

AMAZON WEB SERVICES. Amazon Rekognition. https://
aws.amazon.com/rekognition/, 2020. Accessed 25.3.2020.

ARCHANJO, G. A. MarvinJ. http://marvinj.org/en/releases/
marvinj_1.0.html, July 2019. Accessed 18.5.2020.

Buaumik, R. Bringing High-quality Imaging to the Web
Platform. https://medium.com/@rijubratabhaumik/bringing-high-

quality-imaging-to-the-web-platform-8b2e2eb67b56, January 2019.
Accessed 25.3.2020.

Buaumik, R. WebCamera. https://github.com/riju/WebCamera/,
2019. Accessed 15.4.2020.

CAN I USE. Atomics. https://caniuse.com/#search=atomi, 2020. Ac-
cessed 20.5.2020.

CAN I USE. WebAssembly. https://caniuse.com/#search=wasm, 2020.
Accessed 10.5.2020.

BIBLIOGRAPHY 62

[29] CHROME PrLATFORM STATUS. WebAssembly SIMD. https:
//www.chromestatus.com/feature/6533147810332672, 2020. Accessed
20.5.2020.

[30] DABROWSKI, P. Facemoji. https://github.com/PiotrDabrowskey/
facemoji, July 2019. Accessed 18.5.2020.

[31] DANILO, A. WebAssembly Threads ready to try in Chrome 70. https:
//developers.google.com/web/updates/2018/10/wasm-threads/, Octo-
ber 2018. Accessed 25.3.2020.

[32] DAVIDSON FELLIPE. Lena.js. https://fellipe.com/demos/lena-js/,
April 2020. Accessed 18.5.2020.

[33] EMSCRIPTEN. https://emscripten.org/, 2015. Accessed 25.3.2020.

[34] EMSCRIPTEN. FAQ. https://emscripten.org/docs/getting started/
FAQ.html, 2015. Accessed 20.5.2020.

[35] GENT, P. Emotion recognition with python, opencv and
a face dataset. http://www.paulvangent.com/2016/04/01/emotion-
recognition-with-python-opencv-and-a-face-dataset/, April 2016.
Accessed 7.5.2020.

[36] GOOGLE AR. Three.ar.js. https://github.com/google-ar/
three.ar.js/, 2018. Accessed 25.3.2020.

[37] Huang, S. Computer Vision .js frameworks you need to know.
https://www.freecodecamp.org/news/computer-vision-js-frameworks-
you-need-to-know-b233996103ce/, March 2019. Accessed 25.3.2020.

[38] HusARr, A. 20 Progressive Web Apps Examples That Will Inspire
You to Build Your Own. https://onilab.com/blog/20-progressive-
web-apps-examples/, February 2020. Accessed 18.5.2020.

[39] INTEL. OpenVINO Toolkit. https://github.com/openvinotoolkit/
openvino/commits/2019, 2020. Accessed 20.5.2020.

[40] JUNEJA, P. Building Markerless AR For Web using Three.ar.js (Part
1). https://medium.com/@pulkit.16296/building-markerless-ar-for-
web-using-three-ar-js-part-1-5eca95d545ec/, July 2018. Accessed
25.3.2020.

BIBLIOGRAPHY 63

[41]

[42]

[43]

[44]

[45]

LEE, A. 40 Examples of Progressive Web Apps (PWAs) in
2020. https://www.tigren.com/examples-progressive-web-apps-pwa/,
January 2020. Accessed 18.5.2020.

LEFEVRE, R. CamanJS. http://camanjs.com/examples/, February
2020. Accessed 18.5.2020.

LUNDGREN, E. Tracking.js. https://trackingjs.com/, 2018. Accessed
25.3.2020.

MADE WITH WEBASSEMBLY. AutoCAD Web App. https://

madewithwebassembly.com/showcase/autocad/, November 2019. Ac-
cessed 25.3.2020.

MADE WITH WEBASSEMBLY. Vlc.js. https://

madewithwebassembly.com/showcase/vlc/, February 2020. Accessed
25.3.2020.

MDN WEB Docs. Shared ArrayBuffer. https://
developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/

Global Objects/SharedArrayBuffer/, January 2020. Accessed
25.3.2020.

MDN wegB DOCS. WebAssembly. https://developer.mozilla.org/en-
US/docs/WebAssembly, February 2020. Accessed 11.5.2020.

MoroNY, J. Using the Camera API in a PWA with Capac-
itor. https://www.joshmorony.com/using-the-camera-api-in-a-pwa-

with-capacitor/, September 2019. Accessed 18.5.2020.

NATTESTAD, T. AND STEPANYAN, [. Oh the things you'll
compile: Modern WebAssembly. https://wuw.youtube.com/watch?v=
kZr191SPSpc&feature=youtu.be&t=649, November 2019. Accessed
25.5.2020.

OPENCYV. https://opencv.org/about/, 2020. Accessed 25.3.2020.

OPENCV CHANGE LOG. https://github.com/opencv/opencv/wiki/
ChangeLog, 2020. Accessed 4.5.2020.

OPENCV TUTORIALS. Image Processing. https://docs.opencv.org/
master/d2/df0/tutorial js table of contents imgproc.html, 2020. Ac-
cessed 3.5.2020.

BIBLIOGRAPHY 64

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

OvGarD, A. M. Headtrackr. https://github.com/auduno/
headtrackr/, 2014. Accessed 25.3.2020.

OvcarD, A. M. Clmtrackr. https://github.com/auduno/clmtrackr/,
2018. Accessed 25.3.2020.

PAris, S. Fixing the gaussian blur: the bilateral filter. https://

people.csail.mit.edu/sparis/bf_course/slides/03_definition _bf.pdf,
June 2007. Lectire notes. Accessed 30.4.2020.

P1sAREVSKY, V., AND KURTAEV, D. Deep Learning in

OpenCV. https://github.com/opencv/opencv/wiki/Deep-Learning-
in-0OpenCV/, December 2018. Accessed 25.3.2020.

PROGRESSIVE WEB APP RoOM. Great examples of progressive web

apps in one room. http://progressivewebapproom.com/index.html. Ac-
cessed 18.5.2020.

PWA WorksHOP. Adding a Web App Manifest. https://
pwa-workshop.js.org/1-manifest/#manifest-fields, 2020. Accessed
4.5.2020.

RICHARD, S., AND LEPAGE, P. What are Progressive Web Apps?
https://web.dev/what-are-pwas/, January 2020. Accessed 25.3.2020.

ROSEBROCK, A. PylmageSearch. https://www.pyimagesearch.com/,
2020. Accessed 18.5.2020.

SAID, P. Vue-pwa-camera. https://github.com/pierresaid, April 2020.
Accessed 18.5.2020.

SAJJIAD, Z. Ai in browsers: Comparing tensorflow, onnx, and webdnn
for image classification. https://blog.logrocket.com/ai-in-browsers-
comparing-tensorflow-onnx-and-webdnn-for-image-classification/,

December 2019. Accessed 16.5.2020.

SANTONI, M. Progressive Web Apps browser support and com-
patibility. https://www.goodbarber.com/blog/progressive-web-apps-

browser-support-compatibility-a883/, January 2018. Accessed
25.3.2020.
SURMA. Emscripting a C library to Wasm. https:

//developers.google.com/web/updates/2018/03/emscripting-a-c-
library, March 2018. Accessed 12.5.2020.

BIBLIOGRAPHY 65

[65]

[66]

[67]

[68]

TANGIBLEJS. Code Libraries: Computer Vision. https:
//tangiblejs.com/libraries/computer-vision/, 2020. Accessed
25.3.2020.

TENSORFLOW. TensorFlow.js is a library for machine learning in

JavaScript. https://www.tensorflow.org/js/. Accessed 25.3.2020.

V8 PROJECT. Fast, parallel applications with WebAssembly SIMD.
https://v8.dev/features/simd/, January 2020. Accessed 25.3.2020.

WanNG, C. What's the difference between haar-feature classifiers and
convolutional neural networks? https://towardsdatascience.com/
whats-the-difference-between-haar-feature-classifiers—and-
convolutional-neural-networks-ce6828343aeb, August 2018. Ac-
cessed 7.5.2020.

WEBASSEMBLY. https://webassembly.org/, 2020. Accessed 10.5.2020.

ZATEPYAKIN, E. Jsfeat. https://github.com/inspirit/jsfeat/, 2018.
Accessed 25.3.2020.

